AZION

Python Anti-Patterns

What we should NOT do in our code

July, 2021

Vinicius Gubiani Ferreira

A little bit about myself

Vinicius Gubiani

Ferreira

B Summary

- Motivation
. Generic anti-patterns

. The Little Book of Python Anti-Patterns

© Azion 2021

Motivation

tion

otiva

=M

Help you reach the

next level

2

Generic anti-patterns
(apply to any language)

B Generic anti-patterns

What exactly is a (design) pattern?

= Common solution to recurring problem; o0,

Happens at least 3 times, with different
teams, without contact among them;

N\
AN
= Ends up being widely adopted; + %
/
= Convergence methodology; \@

= Reliable and effective;

© Azion 2021

The AntiPatternon -
the other hand |

Looks great when we start ...

until it's not anymore!

Often causes more damage than the original problem
itself;

A anti-pattern it's a solution that
initially look like a attractive road
lined with flowers...

...but further on leads you into a
maze filled with monsters.

© Azion 2021

Usually belong to 1 of 3 large
categories

Anti
‘Patterns

Refactoring Software, Architectures,
and Projects in Crisis

= Development;
« Architecture;

= Project Management;

Il William H. Brown Raphael C. Malveau
I Hays W.“Skip” McCormick ' Thomas). Mowbray

B Generic anti-patterns

A few AntiPatterns = Boat anchor; = Cargo cult programming;
qu many patterrTs walpessing 30 = Spaghetti code; = Premature optimization;
minute presentation, so we'll only discuss

some of them, such as = God object; « Magic numbers;

= Vendor Lock-in; = Gold plating;

© Azion 2021

3

The Little Book of
Python Anti-Patterns

The Little Book of Python Anti-Patterns

Y

Wad

Categories of

t h € b 00 k Correctness Maintainability
Performance Security

</ \l/q\

Readability Migration

B Python anti-patterns

No exception type specified

Bad Code sample B Good Code sample

try: CIYiS

do_something() do_something()

except: except ValueError:

A W N =

pass logging.exception('Caught error')

vn b WN

pass

B Python anti-patterns

Ignore context managers to

handle files

Bad Code sample

f = open("file.txt", "r"

content = f.read()

1/0
f.close()

B Good Code sample

withilopen¢ifilestxt!, “r") as f:
content = f.read()

1/0

B Python anti-patterns

Return more than one variable type
in function calls

Bad Code sample B Good Code sample

def get_secret _code(password): def get_secret_code(password):

if password != "bicycle": if password != "bicycle":

return None raise ValueError

return "42" return "42"

B Python anti-patterns

Accessing a protected member from

outside the class

Bad Code sample B Good Code sample

class Rectangle(object): il Make attributes part of the public
def__init__(self, width, height): 2 interface of the class (getters and

self._width = width 3 setters).

self. height = heigh

tr = Rectangle(5, 6)
memberprint(

"Width:{:d}".format(r._width)

O 00 N & nn A W N =

B Python anti-patterns

Assigning to built-in
function

3 Vel'y Bad Code sample B Good Code sample

1 numbers = [1, 2, 3]

2 cars = list()

B Python anti-patterns

Using tabs or mixing
tabs with spaces

Bad sample B Good Code sample

1 # Indentation with Tabs 1 # Indentation with 4 spaces

Developers who use spaces make
money!

Median annual salary (US Dollars)

Use

Spaces
$ 75,000 Tabs
Both
$ 50,000
$ 25,000
$0
<= 5years 6-10 115215 15+

Numbers of years coded as part of their job

Source:_Stackoverflow

https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/

B Python anti-patterns

Not using else where
appropriate in a loop

Bad Code sample B Good Code sample

magic_number

for number in m

for number in my_list: 5 if number == magic_number:

6 if number == magic_number: 6 print("Magic number found")

7 found =True - break

7
5 print("Magic number found") 5 else:
4] 8

break print("Magic number not found

if not found:

print("Magic number not found")

B Python anti-patterns

Not using get() to return a default

value from a dict

Bad Code sample B Good Code sample

dictionary = {"message": "Hello!"} dictionary = {"message": "Hello!"}

data = " data = dictionary.get("message", "")

if "message" in dictionary: 3 print(data)

il
2
3
4 data = dictionary["message"]
5

print(data)

B Python anti-patterns

Using wildcard imports

Bad sample B Good Code sample

1 from math import * 1 from math import ceil

B Python anti-patterns

Using the global statement

Bad Code sample B Good Code sample

1 WIDTH = 0O 1 class Rectangle:

2 HEIGHT = 0 2 def__init__(self, width, height):

3 3 self.width = width

4 def area(w, h): 4 self.height = height

5 global WIDTH 5 def area(self):

6 global HEIGHT 6 return self.width * self.height
7 WIDTH = w

8 HEIGHT = h

9

return WIDTH * HEIGHT

B Python anti-patterns

Using single letter to name your
variables

B Good sample

Very Bad sample

1 L= by 2y 8, Ay 51 1 canitids =Nl 153 a4 RG]l

B Python anti-patterns

Comparing things to True the
wrong way

Bad Code sample B Good Code sample

1 flag = True flag = True

2 if flag == True: if flag:

3

print("This works!")

)

print("This works!"

flag = True
if flag is True:

N O i A WN

print("This works!")

CodeTip

>>> 1 1s True

False

>>> 1 == True

True

>>> 1.0 == True

True

>>> -1 == True

False

>>> True is True

True

>>> 1d(1)
4495956272

>>> 1d(True)

4495126176

>>> 1d(1.0)
4497188208

>>> 1d(-1)
4495956208

B Python anti-patterns

Using type() to compare
types

Bad Code sample B Good Code sample

¢ = CGircle(2) r = Rectangle(3, 4)
r = Rectangle(3, 4) if isinstance(r, types.ListType):

if type(r) is not type(c): print("object r is a list")

print("object types do not match"

B Python anti-patterns

Not using named tuples in function
return

Bad Code sample B Good Code sample

def get_name(): from collections import namedtuple

return "Richard", "Jones" def get_name():

name = get_name() name = namedtuple(

no idea what these indexes map to! "name", ["first", "last"]

o A W N =

)

return name("Richard", "Jones")

print(name[0], name[1])

name = get_name()

print(name.first, name.last)

0 N o0 i A WN B

AZION

References

= AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis

» https://sahandsaba.com/nine-anti-patterns-every-programmer-should-be-aware-of-with-examples.html

» https:/martinfowler.com/bliki/AntiPattern.html

» https://sourcemaking.com/antipatterns

» https://en.wikipedia.ora/wiki/Anti-pattern

» https://stackoverflow.blog/2017/06/15/developers-use-spaces-make-money-use-tabs/

= https://realpython.com/the-most-diabolical-python-antipattern/

= https://deepsource.io/blog/8-new-python-antipatterns/

» https://raw.githubusercontent.com/quantifiedcode/python-anti-patterns/master/docs/The-Little-Book-Of-Python-Anti-Patterns.pdf

ooooo

O
oo
]

© Azion 2021

https://sahandsaba.com/nine-anti-patterns-every-programmer-should-be-aware-of-with-examples.html
https://sourcemaking.com/antipatterns
https://en.wikipedia.org/wiki/Anti-pattern
https://realpython.com/the-most-diabolical-python-antipattern/
https://deepsource.io/blog/8-new-python-antipatterns/
https://raw.githubusercontent.com/quantifiedcode/python-anti-patterns/
http://master/docs/The-Little-Book-Of-Python-Anti-Patterns.pdf

AZION

Thank you

Obrigado
Gracias
Vielen Dank
Cnacu6éo
55t 554 WL
hYnE

© Azion 2021

AZION

Have a question?

Please contact me

K B8 9 A

vinigfer
vinigfer
vinicius-gubiani-ferreira

vini.g.fer@gmail.com

© Azion 2021

