
Design Secure APIs
Technical specifications and tools from
the API Italian Interoperability Framework

EuroPython 2021

Roberto Polli
API Ecosystem

Agenda

AGENDA

Enforce secure design practices and
coherent interfaces for services provided
by 20k+ agencies

➔ Digital Interfaces Challenges

➔ API Guidelines

➔ A roundup of useful standards on HTTP headers,
content and authentication in REST APIs

➔ Open source Online Validator

Standardizing all public
sector APIs
Guidelines can uniform APIs produced by
thousands of service providers

THE CHALLENGE

60M People
+12k Public Agencies
+8k Cities
20 Regions
(∞ cultural heritage)

Risks
➔ over-complexity: bureaucratic, non-digital processes

are mapped to convoluted APIs without a proper
redesign

➔ time-constrained engineering: a restricted group of
people addressing the above use-cases within a short
deadline

Mitigations
➔ Interface Description Languages: a formal description

of API interactions, eg: OpenAPI (HTTP) and WSDL
(SOAP).

➔ API Guidelines: to uniform the design and security of
REST and SOAP services between 12k agencies,
together with tools to help agencies and their
suppliers in checking their design. Engage with IETF
communities!

Secure and usable by design
with API Guidelines
To achieve reliable, secure and
consistently designed services Italy
wrote API Guidelines and support tools

THE CHALLENGE

https://teamdigitale.github.io/api-oas-checker/

➔ HTTPS - checks that all URLs in the spec use
the https scheme

➔ Authentication and authorization - checks
that every endpoint is properly protected

Security basics
Using OpenAPI3 simplifies a broad set of
design checks, including some of the
OWASP API Security top 10

BASICS

➔ Use HTTP methods correctly - for example
checking that PATCH requests have a
suitable media-type, eg.
application/merge-patch RFC7386

➔ RateLimit (OWASP API4:2019) - define and
enforce a coherent ratelimit framework such
as draft-ietf-httpapi-ratelimit-headers

Security basics
Using OpenAPI3 simplifies a broad set of
design checks, including some of the
OWASP API Security top 10

BASICS

https://datatracker.ietf.org/doc/html/rfc7386
https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-ratelimit-headers

✓Strict-Transport-Security

✓X-XSS-Protection

✓X-Content-Type-Options

✓Content-Security-Policy

✓X-Permitted-Cross-Domain-Policies

✓Expect-CT

✘Server

✘X-Powered-By

HTTP Headers
Not just adding or removing headers
around!

HEADERS

➔ Cache-Control - clarify in the specification
how do you use cache

➔ Authorization - describe authentication and
authorization headers and policies directly
into the spec

HTTP Headers
Document how you use Cache and
Authorization requirements

HEADERS

➔ Limit header parsing complexities - eg.
RFC8941 defines a safe serialization model
for header values. There's a python library
too!

HTTP Headers
Using secure serializers and parsers to
manage headers reduces the attack
surface of your APIs.

HEADERS

from http_sfv import Dictionary

Serializing a dictionary structured header
data = {"a": 1, "b": "two", "c": b'\x01\x02\x03'}
dict_header = Dictionary(data)
headers["Foo"] = {
"Foo": str(dict_header)
}

Foo: a=1, b="two", c=:AQID:

Parsing
dict_header = Dictionary() # an empty header object
dict_header.parse(response.headers["Foo"])

assert dict_header["b"].value == "two"

Some JSON hints:

➔ utf-8 only - RFC 8259

➔ encode floats/bigint as strings - rfc7493#section-2.2

➔ beware of duplicate names - rfc7493#section-2.3

➔ use strict parsers and don't truncate characters - consider
that client and server will probably use different libraries.
Custom parser may be less secure.

Read I-JSON specs RFC7493.

For XML, see the comprehensive OWASP XML Security Cheat Sheet

Use interoperable
subsets of JSON and XML
json-schema and XSD can model complex
data-types, support nested structures and
implementations have many nuances.

CONTENT AND SCHEMES

>>> json.dumps({"1^1000": 1e1000})
'{"1^1000": Infinity}'

>>> json.loads('{"x": 1, "x": 2}')
{"x": 2}

>>> custom_json_parser.loads('{ "u": "ro\ud888ot"}')
{"u": "root"}

https://tools.ietf.org/html/rfc8259.html
https://datatracker.ietf.org/doc/html/rfc7493#section-2.2
https://datatracker.ietf.org/doc/html/rfc7493#section-2.3
https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html

Object validation is very tolerant

Specify required properties - or objects will always validate.

Disable additional properties - if you don't want unexpected fields

fasfsa

Limit item values and occurrencies.

Account:
 type: object
 properties:
 user: {$ref: "#/Uid"}

Uid:
 type: integer
 minimun: 0
 maximum: 1000

Title:
 type: string
 minLength: 5
 maxLength: 128
 pattern: '[a-zA-Z0-9]+'

Titles:
 type: array
 minItems: 1
 maxItems: 100
 uniqueItems: true
 items: {$ref: '#/Title'}

Constrain json-schema objects

Limit numbers and strings - in practice, every schema is limited
in size. Start with reasonable values, then raise up.

Limit array sizes - arrays should be limited too

✓{"user": 123}
✓{}
✓{"name": ""}

Account:
 type: object
 required: [user]
 properties:
 user: {$ref: "#/Uid"}

✓{"user": 12}
✓{
 "user: 1
 "infinite_list": [..]
 }

Account:
 type: object
 additionalProperties : false
 required: [user]
 properties:
 user:
 $ref: "#/Uid"
 titles:
 $ref: "#/Title"

✓{"user": 12}

✓{
 "user": 12,
 "titles": []
 }

JSON and XML flexibility increases their attack surface

JWT Best Current Practices (RFC8725) :
- use and verify appropriate algorithms, avoid substitution

attacks
- use / validate the audience, issuer and subject claims
- don't trust received claims

More JWT hints:
- limit temporal validity with nbf and exp claims
- add a token identifier (jti claim) to mitigate replay attacks
- don't use private keys associated to TLS certs to sign JWT to

avoid cross-protocol attacks

OAuth2 hints:
- don't use "implicit" and "resource owner password" flows
- use "authorization code with PKCE" and "client credentials"

with a jwt-bearer client_assertion_type (RFC7523)
- limit access token requests to specific resources using

RFC8707

JWT and OAuth2
RFC8725 defines security best practices
for JSON Web Tokens, and OAuth2
deprecated insecure flows.

JWT

https://github.com/WICG/webpackage/issues/420

 italia/api-oas-checker

APIs interactions and data schemas must be formally
defined in "specification files" using an Interface
Description Language. We can validate those files
using automatic tools like italia/api-oas-checker!

➔ security: avoid common errors in API design

(under-defined schemas, insecure methods, ...)

➔ standards: verify that Internet Standards are
used correctly

➔ usability: the design is consistent with respect
to the API domain and other usability rules (eg.
field names, methods, ...)

Guide implementers in checking the
quality and security of APIs via the
conformance with given rulesets,
based on the Spectral open source
tool.

OpenAPI Checker

[1] Spectral: https://github.com/stoplightio/spectral

https://github.com/italia/api-oas-checker
https://github.com/stoplightio/spectral

 italia/api-oas-checker

Guideline support tools

Coherent and secure by design,
integrating checks in your IDE.

 italia/api-oas-checker

➔ Usability: improve the web interface, which is

the showcase of the API Guidelines

➔ Security: create a community around the
identification and implementation of more
security rules

➔ Coherence: improve the coverage of the Italian
API Guidelines and evolve the project together
with the framework

➔ Community: synergies and contributions to
related and underlying projects

Involve communities, countries and
API experts in the project

Next Steps

https://italia.github.io/api-oas-checker/

https://innovazione.gov.it/

@InnovazioneGov

@DipartimentoTrasformazioneDigitale

@company/ministeroinnovazione/

Follow us

Roberto Polli
• Email: roberto@teamdigitale.governo.it
• GitHub: ioggstream

Document released with
 a CC-BY-SA-4.0 license

