Protecting Your Machine Learning Against Drift: An Introduction Oliver Cobb - Applied Machine Learning Researcher

We will look at

- Mhat drift is and <u>why</u> it pays detect it.
- The different <u>types</u> of drift.
- Bigginal How drift can be detected in a principled manner.
- The anatomy of a <u>drift detector</u>.
- Demystify concepts such as 'online detectors', 'permutation tests', 'MMD test' etc.
- **Practical demonstration with alibi-detect.**

Preliminaries

- . Wish to use y for some prediction/output.
- . Can't observe y, can observe $x=(x_1,...,x_d)$ that are related.
- . We fit a model M to predict y from x and use $\hat{y} = M(x)$ as the prediction/output.
- . Performance on held out data gives estimate for future performance...

Assuming the process underlying x and y remains constant.

- When the process underlying x and y during deployment differs from the process that generated the training data.
- . Can no longer expect the model's performance during deployment to match that observed on held out training data.

p(x,y)

.

Image credit: <u>https://camelyon17.grand-challenge.org/</u> & <u>https://wilds.stanford.edu/</u>

p(x,y) = p(y|x)p(x) = p(x|y)p(y)

Change or chance?

- . We don't expect new data to look identical to training data.
- . So how do we differentiate systemic change from natural fluctuations?
- . Statistical hypothesis testing!

Statistical Hypothesis Testing

- . Before observing data Z, specify null and alternative hypothesis, H_0 and H_1 .
- . Specify test statistic S(Z) we expect to be small if H_0 and large if H_1
- . Observe data, compute S(Z), compute $\hat{p} = P(\text{such an extreme S(Z)} | H_0)$.
- . Low p-value discredits H₀.
 - Typically specify a threshold p (FPR) in advance and reject null if $\hat{p} < p$.

Offline Drift detection

- Let q_0 be distribution underlying training data, Z_0 .
- . Let q_1 be the distribution underlying a batch of new data, Z_1 .
- $\mathbf{H}_{0}: \mathbf{q}_{0} = \mathbf{q}_{1}. \quad \mathbf{H}_{1}: \mathbf{q}_{0} \neq \mathbf{q}_{1}.$
- . $S(Z_0, Z_1)$ small if H_0 true, large if H_1 true.
- Compute \hat{p} . Flag drift if $\hat{p} < p$ for desire FPR p.

The hard part!

Online Drift detection

- . Data points z=(x,y) arrive in sequence, z_1, z_2, \dots and we'd like to detect drift ASAP.
- . Assumption:

$$z_i \sim \begin{cases} q_0 & \text{for } i < T^* \\ q_1 & \text{for } i \ge T^* \end{cases}$$

. At each time t we perform a hypothesis test of $\{H_0: T^* > t\}$ vs $\{H_1: T^* \le t\}$.

i.e. "has drift occurred yet"?

Online Drift detectors - desired properties

When a change occurs the detector is fast to respond.

- i.e. Expected Detection Delay, EDD = E[T' T*], is small.
- Ability to specify the frequency of false detections in the absence of change.

Often

overlooked

- i.e. We can specify Expected Run Time, ERT = $E[T' | T^* = \infty]$
- . There's an ERT vs EDD tradeoff.

- How do we apply SHT to data arriving sequentially?
- By collecting instances into "test" windows.
- These can then compared to the fixed "reference" window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t	1	2	3	4	5	6	7	8	9	10
x ₁	0.21	1.51	-1.03	-0.08	1.46	0.80	1.13	0.17	-0.35	-0.12
x ₂	-0.41	0.05	0.59	-0.94	0.73	0.74	-1.52	0.66	-1.19	-0.72
TEST!							-	FEST!		

Disjoint

- How do we apply SHT to data arriving sequentially?
- By collecting instances into "test" windows.
- These can then compared to the fixed "reference" window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t	1	2	3	4	5	6	7	8	9	10
x ₁	0.21	1.51	-1.03	-0.08	1.46	0.80	1.13	0.17	-0.35	-0.12
x ₂	-0.41	0.05	0.59	-0.94	0.73	0.74	-1.52	0.66	-1.19	-0.72

Overlapping

TEST!TEST!TEST!

- How do we apply SHT to data arriving sequentially?
- By collecting instances into "test" windows.
- These can then compared to the fixed "reference" window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t	1	2	3	4	5	6	7	8	9	10
x ₁	0.21	1.51	-1.03	-0.08	1.46	0.80	1.13	0.17	-0.35	-0.12
x ₂	-0.41	0.05	0.59	-0.94	0.73	0.74	-1.52	0.66	-1.19	-0.72

Adaptive

- Different windowing strategies call for different test statistics and threshold determination processes.
- They also each have their own pros and cons.

t	1	2	3	4	5	6	7	8	9	10
x ₁	0.21	1.51	-1.03	-0.08	1.46	0.80	1.13	0.17	-0.35	-0.12
x ₂	-0.41	0.05	0.59	-0.94	0.73	0.74	-1.52	0.66	-1.19	-0.72

Disjoint Window Detectors

- Tests are independent and performed infrequently.
- Can compute p-value corresponding to <u>any test statistic</u> S(Z₀,Z₁)! Achieved via a permutation test:
 - . shuffle($Z_{0,}Z_{1}$) : $(Z_{0,}Z_{1}) \mapsto (Z_{0,}Z_{1}^{*})$
 - . alt_stats = $[S(shuffle(Z_0, Z_1)) \text{ for } _ \text{ in range}(B)]$
 - . $\hat{p} = (alt_stats > S(Z_0, Z_1)).mean()$
- <u>Can learn</u> new <u>test statistic</u> S for each test.
- Sensitive to choice of window size.
- Slow to respond to severe drift.

Overlapping Window Detectors

- Test statistics are correlated.
- Makes controlling ERT very difficult.
- Test statistic must be:
 - 。 Incremental
 - Pre-specified
- Computationally <u>light</u>.
- Fast to respond to severe drift.

Adaptive Window Detectors

- Typically accumulate some notion out 'outlierness'.
- Hard to control ERT.
- Adaptive window size.
- Accumulating 'outlierness' not good for EDD!
- Why not?

Image credit: Basseville and Nikiforov (1993) - Detection of Abrupt Changes: Theory and Application

$$q_0 = N(0, I_2)$$

$$q_0 = N(0, I_2)$$

 $q_1 = N(\mu, \sigma l_2)$

$$q_0 = N(0, I_2)$$

 $q_1 = N(\mu, \sigma I_2)$

$$q_0 = N(0, I_2)$$

 $q_1 = N(\mu, \sigma I_2)$

$$q_0 = N(0, I_2)$$

 $q_1 = N(\mu, \sigma I_2)$

Test Statistics

- Outlierness-based test statistics are not sufficient so what is?
- Test statistics which estimate distance between q₀ and q₁.
- Could first estimate \hat{q}_0 and \hat{q}_1 and evaluate $d(\hat{q}_0, \hat{q}_1)$.
- More efficient to directly estimate $d(q_0, q_1)$.
- $d(q_0,q_1) = MMD_k(q_0,q_1)$ features prominently in alibi-detect.

Maximum Mean Discrepancy (MMD_{k})

- Transforms problem from specifying a distance d(q₀,q₁) between distributions to specifying a similarity (kernel) k(z₀,z₁) between data points.
- Typically $k(z_0, z_1) = \Phi(z_0)^T \Phi(z_1)$ for some projection Φ .

•
$$MMD_k(q_0,q_1) = E[k(z_0,z_0) + k(z_1,z_1) - 2k(z_0,z_1)]$$

 MMD_k(q₀,q₁) = Avg. similarity between reference instances + Avg. similarity between test instances
 - 2*Avg. similarity between reference and test instances

$$\frac{1}{n_x(n_x-1)} \sum_{x_1 \neq x_2 \in \mathcal{X}} k(x_1, x_2) + \frac{1}{n_y(n_y-1)} \sum_{y_1 \neq y_2 \in \mathcal{Y}} k(y_1, y_2) - \frac{2}{n_x n_y} \sum_{(x,y) \in \mathcal{X} \times \mathcal{Y}} k(x, y)$$

Maximum Mean Discrepancy (MMD_k)

 $MMD_k(q_0,q_1) = Avg.$ similarity between reference instances (small)

+ Avg. similarity between test instances (large)

- 2*Avg. similarity between reference and test instances (small)

= large (e.g. 0.1 + 0.8 - 2*0.12 = 0.68)

Maximum Mean Discrepancy (MMD_k) - Permuted

 $MMD_k(q_0,q_1) = Avg.$ similarity between reference instances (small)

+ Avg. similarity between test instances (small)

- 2*Avg. similarity between reference and test instances (small)

= small (e.g. 0.09 + 0.11 - 2*0.09 = 0.02)

Summary and demo

SALIBI DETECT

Detector	Tabular	Image	Time Series	Text	Categorical Features	Online	Feature Level
Kolmogorov-Smirnov	 	~		v	×		~
Maximum Mean Discrepancy	v	~		~	v	~	
Least-Squares Density Difference	~	~		~	V	~	
Chi-Squared	 				v		~
Mixed-type tabular data	 V 				v		 ✓
Classifier	V	V	~	V)	v		
Classifier Uncertainty	 	V	~	V	v		
Regressor Uncertainty	V	~	V	V	v		

Thanks for watching!

github.com/SeldonIO/alibi-detect

