
Protecting Your Machine Learning
Against Drift: An Introduction
Oliver Cobb - Applied Machine Learning Researcher

We will look at

○ What drift is and why it pays detect it.
○ The different types of drift.
○ How drift can be detected in a principled manner.
○ The anatomy of a drift detector.
○ Demystify concepts such as ‘online detectors’, ‘permutation tests’, ‘MMD test’ etc.
○ Practical demonstration with alibi-detect.

Preliminaries

● Wish to use y for some prediction/output.
● Can’t observe y, can observe x=(x1,...,xd) that are related.
● We fit a model M to predict y from x and use ŷ = M(x) as the prediction/output.

● Performance on held out data gives estimate for future performance…
Assuming the process underlying x and y remains constant.

What is drift?

● When the process underlying x and y during deployment differs from the process that
generated the training data.

● Can no longer expect the model’s performance during deployment to match that
observed on held out training data.

p(x,y)

Image credit: https://camelyon17.grand-challenge.org/ & https://wilds.stanford.edu/

https://camelyon17.grand-challenge.org/
https://wilds.stanford.edu/

What is drift?

No Drift Concept Drift

△ p(y|x)

Prior Drift

△ p(y)

Covariate Drift

△ p(x)

p(x,y) = p(y|x)p(x) = p(x|y)p(y)

What is drift?

No Drift Concept Drift

△ p(y|x)

Prior Drift

△ p(y)

Covariate Drift

△ p(x)

Labels available: Supervised drift detection
-> Can monitor model performance directly.

What is drift?

Labels unavailable: Unsupervised drift detection
-> Can’t monitor model performance. Must operate in high dimensions.

No Drift Concept Drift

△ p(y|x)

Prior Drift

△ p(y)

Covariate Drift

△ p(x)

Change or chance?

● We don’t expect new data to look identical to training data.
● So how do we differentiate systemic change from natural fluctuations?
● Statistical hypothesis testing!

Statistical Hypothesis Testing

● Before observing data Z, specify null and alternative hypothesis, H0 and H1.
● Specify test statistic S(Z) we expect to be small if H0 and large if H1.
● Observe data, compute S(Z), compute p̂ = P(such an extreme S(Z) | H0).
● Low p-value discredits H0.

○ Typically specify a threshold p (FPR) in advance and reject null if p̂ < p.

Offline Drift detection

● Let q0 be distribution underlying training data, Z0.
● Let q1 be the distribution underlying a batch of new data, Z1.
● H0: q0=q1. H1: q0 ≠ q1.
● S(Z0,Z1) small if H0 true, large if H1 true.
● Compute p̂. Flag drift if p̂ < p for desire FPR p.

The hard part!

Online Drift detection

● Data points z=(x,y) arrive in sequence, z1,z2,... and we’d like to detect drift ASAP.
● Assumption:

● At each time t we perform a hypothesis test of {H0: T* > t} vs {H1: T* ≤ t}.
○ i.e. “has drift occurred yet”?

Online Drift detectors - desired properties

● When a change occurs the detector is fast to respond.
○ i.e. Expected Detection Delay, EDD = E[T’ - T*], is small.

● Ability to specify the frequency of false detections in the absence of change.
○ i.e. We can specify Expected Run Time, ERT = E[T’ | T*= ∞]

● There’s an ERT vs EDD tradeoff.

Often
overlooked

Windowing Strategies

- How do we apply SHT to data arriving sequentially?
- By collecting instances into “test” windows.
- These can then compared to the fixed “reference” window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t 1 2 3 4 5 6 7 8 9 10

x1 0.21 1.51 -1.03 -0.08 1.46 0.80 1.13 0.17 -0.35 -0.12

x2 -0.41 0.05 0.59 -0.94 0.73 0.74 -1.52 0.66 -1.19 -0.72

Disjoint

TEST! TEST!

Windowing Strategies

- How do we apply SHT to data arriving sequentially?
- By collecting instances into “test” windows.
- These can then compared to the fixed “reference” window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t 1 2 3 4 5 6 7 8 9 10

x1 0.21 1.51 -1.03 -0.08 1.46 0.80 1.13 0.17 -0.35 -0.12

x2 -0.41 0.05 0.59 -0.94 0.73 0.74 -1.52 0.66 -1.19 -0.72

Overlapping

TEST!TEST!TEST!

Windowing Strategies

- How do we apply SHT to data arriving sequentially?
- By collecting instances into “test” windows.
- These can then compared to the fixed “reference” window.
- Windows can be fixed sized and disjoint, fixed size and overlapping or adaptive.

t 1 2 3 4 5 6 7 8 9 10

x1 0.21 1.51 -1.03 -0.08 1.46 0.80 1.13 0.17 -0.35 -0.12

x2 -0.41 0.05 0.59 -0.94 0.73 0.74 -1.52 0.66 -1.19 -0.72

Adaptive

TEST!
KEEP?

TEST!
KEEP?

TEST!
KEEP?

TEST!
KEEP?

Windowing Strategies

t 1 2 3 4 5 6 7 8 9 10

x1 0.21 1.51 -1.03 -0.08 1.46 0.80 1.13 0.17 -0.35 -0.12

x2 -0.41 0.05 0.59 -0.94 0.73 0.74 -1.52 0.66 -1.19 -0.72

- Different windowing strategies call for different test statistics and threshold
determination processes.

- They also each have their own pros and cons.

Disjoint Window Detectors

■ Tests are independent and performed infrequently.

■ Can compute p-value corresponding to any test statistic S(Z0,Z1)!
■ Achieved via a permutation test:

■ shuffle(Z0,Z1) : (Z0,Z1) ↦ (Z*
0,Z

*
1)

■ alt_stats = [S(shuffle(Z0,Z1)) for _ in range(B)]
■ p̂ = (alt_stats > S(Z0,Z1)).mean()

■ Can learn new test statistic S for each test.
■ Sensitive to choice of window size.
■ Slow to respond to severe drift.

Overlapping Window Detectors

■ Test statistics are correlated.
■ Makes controlling ERT very difficult.

■ Test statistic must be:
○ Incremental
○ Pre-specified

■ Computationally light.
■ Fast to respond to severe drift.

Adaptive Window Detectors

■ Typically accumulate some notion out ‘outlierness’.
■ Hard to control ERT.

■ Adaptive window size.
■ Accumulating ‘outlierness’ not good for EDD!
■ Why not?

Image credit: Basseville and Nikiforov (1993) - Detection of Abrupt Changes: Theory and Application

Drift = persistent outliers?

q0 = N(0,I2)

Drift = persistent outliers?

q0 = N(0,I2)

q1 = N(μ,σI2)

Drift = persistent outliers?

q1 = N(μ,σI2)

q0 = N(0,I2)

Drift = persistent outliers?

q1 = N(μ,σI2)

q0 = N(0,I2)

Drift = persistent outliers?

q1 = N(μ,σI2)

q0 = N(0,I2)

Test Statistics

■ Outlierness-based test statistics are not sufficient - so what is?
■ Test statistics which estimate distance between q0 and q1.
■ Could first estimate q̂0 and q̂1 and evaluate d(q̂0,q̂1).
■ More efficient to directly estimate d(q0,q1).
■ d(q0,q1) = MMDk(q0,q1) features prominently in alibi-detect.

Maximum Mean Discrepancy (MMDk)

■ Transforms problem from specifying a distance d(q0,q1) between distributions to
specifying a similarity (kernel) k(z0,z1) between data points.

■ Typically k(z0,z1)=Φ(z0)TΦ(z1) for some projection Φ.

■ MMDk(q0,q1) = E[k(z0,z’0) + k(z1,z’1) - 2k(z0,z1)]

■ MM̂Dk(q0,q1) = Avg. similarity between reference instances
 + Avg. similarity between test instances

 - 2*Avg. similarity between reference and test instances

Maximum Mean Discrepancy (MMDk)

MM̂Dk(q0,q1) = Avg. similarity between reference instances (small)
 + Avg. similarity between test instances (large)
 - 2*Avg. similarity between reference and test instances (small)

 = large (e.g. 0.1 + 0.8 - 2*0.12 = 0.68)

Maximum Mean Discrepancy (MMDk) - Permuted

MM̂Dk(q0,q1) = Avg. similarity between reference instances (small)
 + Avg. similarity between test instances (small)
 - 2*Avg. similarity between reference and test instances (small)

 = small (e.g. 0.09 + 0.11 - 2*0.09 = 0.02)

Summary and demo

github.com/SeldonIO/alibi-detect

Threshold
strategy

Window
Strategy

Test Statistic

Projection

ERT EDD

http://localhost:8888/notebooks/drift_detection.ipynb#
http://github.com/SeldonIO/alibi-detect

Thanks for watching!

github.com/SeldonIO/alibi-detect

@SeldonResearch

oc@seldon.io

