
A crowdsourced map for 
checking supermarket 
wait times worldwide
A 2020 project to help people during the Covid19 global lockdown



Hi everyone from Florence, Italy!
I’m a Full Stack Engineer @ Growens 
and co-founder of Schrodinger Hat 
Podcast

I’m in love with Python and open 
source but, especially, with pizza!

You can find me everywhere as 
@thejoin95 and on mikilombardi.com

WhoAmI

https://www.schrodinger-hat.it/
https://www.schrodinger-hat.it/


TABLE OF CONTENTS

01
Intro & 
Overview

03
APIs & 
Redis

02
Architecture 
& Cloud

04
Costs & 

Conclusions



Intro & Overview
01



As you may know in 2020



Everyone started to take everything 
from the pharmacies and supermarket



The issue

In the days following the global lockdown, supermarkets, pharmacies and 
parapharmacies were attacked by people in search of basic goods and necessities. 

Immediately after the announcement of the lockdown, many supermarkets struggled 
to manage the influx of people, forcing them to gather outside the supermarket, 
standing in line and waiting to enter the building.



The context
The longer you stay out and in contact with other people, the more likely you are 
to contract the virus. Especially in closed and unventilated environments.

The project that I am presenting to you was created primarily for personal use and 
then became for public use worldwide. The project was not for profit but only to 
help others and stay safe.

https://github.com/TheJoin95/covid19-market-waiting-times

https://github.com/TheJoin95/covid19-market-waiting-times


The gathering of people in line in front of shopping malls and pharmacies made me 
think. Why not create some sort of tracking based on some data? Kind of how it 
works for traffic.

So the goal was to create a map with the various points of interest, such as: food, 
bakers, pharmacies, supermarkets, liquor stores etc. where the waiting times 
retrieved by some APIs were shown giving the user the possibility to add a 
temporal feedback for the store in which he was located.

Crowdsourcing was then fundamental for the success of all this, since API’s data is 
based on the time, the popularity of the place and how many devices are nearby. 
User feedback was therefore crucial.

The idea



The map



From local to global
The project stayed online from late April to mid June, when the emergency 
disappeared



Architecture & Cloud
02



Python3.7
Flask

uWSGI + Nginx
Netlify

Redis
PWA

Technology



Hosted on a RBPi 3B 1GB+32GB 32 Bit in port 
forwarding & dynamic dns

- Frontend
- Redis server
- Nginx
- uWSGI
- Flask APIs
- … everything!

Personal use & Beta

Beta testers: friends, mums, friends of friend, 
grandmums, uncles, colleagues, local priest in an area 
30x30km

❤ 



- 1 VPS on OVH.cloud (2GB+30GB)
- 3 VPS Digital Ocean 1x2GB+20GB (ny) & 2x1GB+10GB (uk, sf), CDN

Why I decided to go in cloud:
+ More than 100 contemporary users
+ More than 20k pageviews per day
+ Performance
+ Scaling
+ Availability
+ Future

The “future” was: around 1600 contemporary users & 90-100k pageviews day from all 
over the world especially from North America & Europe

Going Worldwide



+ Centralized Redis
+ 4 APIs instance
+ API rotation in Frontend
+ Up/Down status script for 

each instance
+ uWSGI web server + Flask 

layer
+ North America + Europe 

covered

Schema & Management



APIs & Redis
03



A recap of what these endpoints were used for:

+ Get geocoding data based on Here & Google API
+ Get the estimated waiting time for a place id
+ Get the place by its name
+ Get the place by geocoding
+ Crowdsourcing logic via feedback
+ Logging data such as trace error, message infos. No log 

user activity

Multithreading via uWSGI

APIs
Endpoints

+ /geocode
+ /places/get-waiting-times
+ /places/get-by-name
+ /places/explore
+ /places/browse
+ /feedback
+ /logger



In order to get the places with their wait times we 
add the place in a Redis db via GEOADD

By retrieving the information via latitude and 
longitude we can use GEORADIUS

Having the information saved and encoded 
geographically is a really good advantage in terms 
of performance

On every request, we write on Redis db with a TTL

Geospatial in Redis



Costs & Conclusions
04



Apart from having a RBPi 3B, the cost would be around 30$.
I reused also my former 2020 domain thejoin.tech, creating a subdomain 
covid19-waiting-time.*

I spent about $ 25 per month for cloud usage, the total is around $ 75 per 3 months 
(ovh+digital ocean).

The free inbound/outbound traffic was 10GB per month, so it wasn’t an issue.

In the end, having also the frontend on Cloud it allowed me to satisfy (in the 
whole life cycle) more than 1Mln of users and more than 2.1Mln of sessions in 3 
months of life with more than 1.5K contemporary user

Costs: from RBPi to Cloud



I’m really pleased to had the chance of helping people all over the world.

+ Thanks, to the Open Source
+ Big thumb up to Daniel Dafoe for helping me on the WebIAM & Design
+ Thanks, to my favorites “beta testers”, my friends & family

The code is still available on my Github, the website is offline.

Stay safe,
Miki

Conclusion

https://github.com/danieldafoe


CREDITS: This presentation template was created by 
Slidesgo, incluiding icons by Flaticon, and 

infographics & images by Freepik.



Q&A


