Python Monorepos:
What, Why and How
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Overview

1. What is a monorepo
2. Why would | want one?
3. Tooling for a Python monorepo
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1.

What is a monorepo?
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A common codebase characteristic

They

grow

over time.
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A common consequence of growth

Builds get harder: slower, less manageable

P



Two ways to scale your codebase

Multi-repo vs. Monorepo
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Multi-repo

Split the codebase into growing numbers of small
repos, along team or project boundaries.
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Monorepo

A monorepo is a unified codebase containing
code for multiple projects that share underlying

dependencies, data models, functionality, tooling
and processes.
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monorepo = monolithic server

Monorepos are often great for microservices.
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2. Why should | want a monorepo?
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Multi-repo kinda sounds better at first

More decentralized. More bottom-up.

| can do my own thing in my own repo.
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But, for some core problems...

Multi-repo doesn't solve them.
It hides them.

And it creates new ones.
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The hardest codebase problems are...

Managing Managing
Changes Dependencies
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Multi-repo relies on publishing

For code from repo A to be consumed by other repos,
it must publish an artifact, such as an sdist or wheel.
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Multi-repo relies on versioning

When repo A makes a change, it has to re-publish
under a new version.
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Say repo B depends on repo A

It does so at a specific version:
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When repo B needs a change in repo A

Modify A, publish it at a new version, and consume
that new version in a new version of B.
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Now, you have two choices...
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Change management: virtuous choice

il

Find all the consumers of repo A

Ensure that they still work at A-1.3.0

Make changes as needed until tests pass
Repeat - recursively! - for all repos you changed
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Change management: lazy choice
Don't worry about the other consumers of repo A.
After all, they're safely pinnedtoA-1.2.0.

Let them deal with the problems when they upgrade.

But...
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Dependency hell

This causes a huge dependency resolution problem.
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But in a monorepo

There is no versioning or publishing.

All the consumers are right there in the same repo.

Breakages are immediately visible.
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Monorepos can be more flexible
Easier to refactor

Easier to debug

Easier to discover and reuse code

Unified change history
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Your codebase =¥ your organization

Balkanized codebase =¥ balkanized org

Unified codebase =¥ unified org
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3. Tooling for a Python monorepo
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Build Performance At Scale

Standard Python tools not designed for monorepos.

e Global state.
e Side effects.
e Small changes trigger full reruns.
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How to speed things up
Do less work

e Fine-grained invalidation
e (Caching

Do more work at once

e Concurrency
e Remote execution
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What kind of tooling has these features?

To work effectively, you need a build system
designed for monorepos.

It sits on top of existing standard tooling, and
orchestrates them for you.
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Examples of such tools include

e Pants
e Bazel
e Buck
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How do these tools work?

e (Goal-based command interface
e Reliance on build graph metadata
e Extensible workflow with no side-effects
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Goals

A monorepo build system typically supports
requesting goals on specific inputs.

$ pants test src/python/foo/bar/test.py
$ pants package src/python/foo/**

$ pants lint fmt --changed-since=HEAD
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Code dependencies

A monorepo build system requires extra metadata to
describe the build graph: the units of code and the
dependencies between them.
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Task dependencies

A monorepo build system maintains the rule graph:
The units of work and the dependencies between
them.

Custom rules can be plugged in, for extensibility.
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Build workflow

Code dependencies + task dependencies = workflow.

Recursively maps initial inputs to final outputs.

e side effect-free
e No global state
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The explicitly-modelled workflow enables

fine-grained invalidation
caching

concurrency

remote execution

Which is what makes builds scale with your
codebase!
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Summary

e Monorepos are an effective codebase

architecture
e They require appropriate tooling for performance

and reliability at scale
e This tooling exists!
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Thanks for attending!

You can find us on https://www.pantsbuild.org/, we're
a friendly OSS community, always happy to assist.

I'll be happy to take any questions.
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https://www.pantsbuild.org/

