Python Monorepos:
What, Why and How

About me

e 25 years' experience as a
Software Engineer.
e \Worked at Check Point, Google,
Twitter, Foursquare.
e Maintainer of the Pants OSS project.
e C(Co-founder of Toolchain.

Overview

1. What is a monorepo
2. Why would | want one?
3. Tooling for a Python monorepo

P

1.

What is a monorepo?

P

A common codebase characteristic

They

grow

over time.

P

A common consequence of growth

Builds get harder: slower, less manageable

P

Two ways to scale your codebase

Multi-repo vs. Monorepo

P

Multi-repo

Split the codebase into growing numbers of small
repos, along team or project boundaries.

P

Monorepo

A monorepo is a unified codebase containing
code for multiple projects that share underlying

dependencies, data models, functionality, tooling
and processes.

P

monorepo = monolithic server

Monorepos are often great for microservices.

P

2. Why should | want a monorepo?

P

Multi-repo kinda sounds better at first

More decentralized. More bottom-up.

| can do my own thing in my own repo.

P

But, for some core problems...

Multi-repo doesn't solve them.
It hides them.

And it creates new ones.

P

The hardest codebase problems are...

Managing Managing
Changes Dependencies

_—
SN

P

Multi-repo relies on publishing

For code from repo A to be consumed by other repos,
it must publish an artifact, such as an sdist or wheel.

r2o)

P

Multi-repo relies on versioning

When repo A makes a change, it has to re-publish
under a new version.

o) [(wro)

P

Say repo B depends on repo A

It does so at a specific version:

ato) frrzo)

P

When repo B needs a change in repo A

Modify A, publish it at a new version, and consume
that new version in a new version of B.

azo) faro0)

Now, you have two choices...

P

Change management: virtuous choice

il

Find all the consumers of repo A

Ensure that they still work at A-1.3.0

Make changes as needed until tests pass
Repeat - recursively! - for all repos you changed

P

Change management: lazy choice
Don't worry about the other consumers of repo A.
After all, they're safely pinnedtoA-1.2.0.

Let them deal with the problems when they upgrade.

But...

P

Dependency hell

This causes a huge dependency resolution problem.

B-4.2.0]—[A—l.B.O]
\
A—1.2.0]/ i‘,

[C—1.8.0

But in a monorepo

There is no versioning or publishing.

All the consumers are right there in the same repo.

Breakages are immediately visible.

P

Monorepos can be more flexible
Easier to refactor

Easier to debug

Easier to discover and reuse code

Unified change history

P

Your codebase =¥ your organization

Balkanized codebase =¥ balkanized org

Unified codebase =¥ unified org

P

3. Tooling for a Python monorepo

P

Build Performance At Scale

Standard Python tools not designed for monorepos.

e Global state.
e Side effects.
e Small changes trigger full reruns.

P

How to speed things up
Do less work

e Fine-grained invalidation
e (Caching

Do more work at once

e Concurrency
e Remote execution

P

What kind of tooling has these features?

To work effectively, you need a build system
designed for monorepos.

It sits on top of existing standard tooling, and
orchestrates them for you.

P

Examples of such tools include

e Pants
e Bazel
e Buck

P

How do these tools work?

e (Goal-based command interface
e Reliance on build graph metadata
e Extensible workflow with no side-effects

P

Goals

A monorepo build system typically supports
requesting goals on specific inputs.

$ pants test src/python/foo/bar/test.py
$ pants package src/python/foo/**

$ pants lint fmt --changed-since=HEAD

P

Code dependencies

A monorepo build system requires extra metadata to
describe the build graph: the units of code and the
dependencies between them.

P

Task dependencies

A monorepo build system maintains the rule graph:
The units of work and the dependencies between
them.

Custom rules can be plugged in, for extensibility.

P

Build workflow

Code dependencies + task dependencies = workflow.

Recursively maps initial inputs to final outputs.

e side effect-free
e No global state

P

The explicitly-modelled workflow enables

fine-grained invalidation
caching

concurrency

remote execution

Which is what makes builds scale with your
codebase!

P

Summary

e Monorepos are an effective codebase

architecture
e They require appropriate tooling for performance

and reliability at scale
e This tooling exists!

P

Thanks for attending!

You can find us on https://www.pantsbuild.org/, we're
a friendly OSS community, always happy to assist.

I'll be happy to take any questions.

P

https://www.pantsbuild.org/

