
Pointers? In My
Python?

It’s more likely than you think!

Eli Holderness / @eliholderness
Developer Advocate at Anvil

what pointers are

what the id of a Python object is

how CPython can tell when you’re done
with an object

What is a pointer?

void *a_pointer;

int *a_pointer_to_an_int;

char *a_pointer_to_a_char;

Pointer aliasing
… also known as ‘wait, I didn’t change that variable, did I?’

>>> a = [“my”, “cool”, “list”]
>>> a
[“my”, “cool”, “list”]

>>> b = a
>>> b[1] = “awesome”
>>> b
[“my”, “awesome”, “list”]

>>> a
[“my”, “awesome”, “list”]

>>> c = a.copy()
>>> c[1] = “amazing”
>>> c
[“my”, “amazing”, “list”]

>>> a
[“my”, “awesome”, “list”]

I heard you like
pointers...

>>> a = [[“a”, “b”], [“A”, “B”]]
>>> a
[[“a”, “b”], [“A”, “B”]]

>>> a[0]
[“a”, “b”, “c”]

>>> b = a.copy()
>>> b[0].append(“c”)
>>> b[0]
[“a”, “b”, “c”]

What if it’s pointers all
the way down?

>>> a[1]
[“A”, “B”]

>>> c = a.deepcopy()
>>> c[1].append(“C”)
>>> c[1]
[“A”, “B”, “C”]

= makes a new pointer to the same
object

copy makes a new object, and copies the
pointers contained in the original

deepcopy makes a new object and copies
the values, all the way down

https://docs.python.org/3/library/copy.html

Tuples behaving
badly

A tuple a is immutable

a[0] must point to the same object
during the lifetime of a

So what if a[0] is mutable?

>>> a = ([1, 2, 3], [“x”, “y”])
>>> a[0]
[1, 2, 3]

>>> a[0].append(4)
>>> a[0]
[1, 2, 3, 4]

>>> a[1] += [“z”]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not
support item assignment

>>> a[1]
[“x”, “y”, “z”]

>>> a[1] += [“z”]

+= mutates (+) then assigns (=)

Object IDs

id(x)

constant
unique

… for the lifetime of x

Many Python implementations use
the object’s address in memory as

its id, but not all!

CPython uses the
memory address

Skulpt generates and
caches a random number

>>> a = [“a”, “list”]
>>> id(a)
140000359895536

>>> b = a
>>> id(a), id(b)
(140000359895536, 140000359895536)

>>> c = a.copy()
>>> id(a), id(c)
(140000359895536, 140000359764000)

When are two
objects actually

the same?

>>> a = [“a”, “list”]
>>> b = a
>>> c = a.copy()

>>> a == c
True
>>> a is c
False

>>> a == b
True
>>> a is b
True

is uses id
a is b

⇔
id(a) == id(b)

== uses __eq__

… so what is __eq__?

__str__

__repr__

__init__

The __eq__ method defines the
behaviour of == when applied to

instances of its class.

class MyClass:
def __eq__(self, other):
return self is other

class MyNamedClass:
def __init__(self, name):
self.name = name

def __eq__(self, other):
return True

>>> a = MyNamedClass(“a”)
>>> b = MyNamedClass(“b”)
>>> a.name == b.name
False
>>> a == b
True

class MyUniqueClass:
def __eq__(self, other):
return False

>>> a = MyUniqueClass()
>>> a == a
False

Object Lifetimes

__del__
called when an object is

about to be removed
from memory

class MyDelClass:
def __init__(self, name):

self.name = name

def __del__(self):
print(f“deleting {self.name}!”)

Reference
Counting

Python frees memory in
two ways:

Garbage
Collection

>>> dave = MyDelClass(“Dave”)
>>> del dave
Deleting Dave!

>>> alice = MyDelClass(“Alice”)
>>> also_alice = alice
>>> del alice

>>> del also_alice
Deleting Alice!

Cyclic references

>>> del jane
>>> del bob

>>> jane = MyDelClass(“Jane”)
>>> bob = MyDelClass(“Bob”)
>>> bob.friend = jane
>>> jane.friend = bob

Reference counting
isn’t sufficient

CPython’s Garbage Collector

detects cyclic isolates

calls their finalizers (__del__)*

breaks the cyclic references

>>> import gc

>>> gc.is_tracked(“a string”)
False

>>> gc.is_tracked([“a”, “list”])
True

>>> jane = MyDelClass(“Jane”)
>>> gc.is_tracked(jane)
True

The GC uses an object’s
traversal method to access all

its pointers

>>> my_list = [“a”, “list”]
>>> gc.get_referents(my_list)
[‘list’, ‘a’]

>>> jane = MyDelClass(“Jane”)
>>> bob = MyDelClass(“Bob”)
>>> bob.friend = jane
>>> jane.friend = bob
>>> del jane
>>> del bob

>>> import gc
>>> gc.collect()
Deleting Jane!
Deleting Bob!
4

Fun with finalizers

class MyBadDelClass:
def __init__(self, name):

self.name = name

def __del__(self):
global person
person = self
print(f“deleting {self.name}!”)

>>> jane = MyBadDelClass(“Jane”)
>>> bob = MyBadDelClass(“Bob”)
>>> bob.friend = jane
>>> jane.friend = bob
>>> del jane
>>> del bob

>>> gc.collect()
Deleting Jane!
Deleting Bob!
0

>>> person
<__main__.MyBadDelClass object at
0x7ff8ce65dd30>

>>> person.name
‘Bob’
>>> person.friend.name
‘Jane’

>>> jane
NameError: name 'jane' is
not defined

>>> del person
>>> gc.collect()
4

Pointers? In My
Python?

It’s more likely than you think!

Eli Holderness / @eliholderness
Developer Advocate at Anvil

