
1

THE OPTIMAL WEDDING
(WITH PYOMO)
Writing and solving constrained optimization problems in Python

Tarik Berrada, TRAYPORT

2

THE OPTIMAL
WEDDING

(WITH PYOMO)

Git-repository:
https://gitlab.com/Rikerl/optimal

wedding

Notebook:
OptimalWedding.ypnb

https://gitlab.com/Rikerl/optimalwedding
https://gitlab.com/Rikerl/optimalwedding

A SEATING ARRANGEMENT PROBLEM

3

● 16 guests
● 4 tables with 4 seats each
● Each guest is characterized by:

○ Corona index ci
○ Gender (binary, for simplicity)

“How can we arrange the guests so that
people with relatively close opinions with
regard to Corona sit at the same table ?”

CORONA DISTANCE

4

● Compute “corona distance” for each pair of guests
(g1,g2):

d(g1, g2) = |ci[g1] - ci[g2]|

→distance matrix

“How can we arrange the guests to minimize the
total corona distance on each table?”

D(table) = sum(0.5 * d(g1,g2)
for g1 at table

 for g2 at table)

A SIMPLE SOLUTION

5

● Simple idea: sort guest by corona index and fill tables accordingly

● But what if we add new constraints ?
○ 1) At least one female/one male guest per table
○ 2) Julius Krazinski and Samantha Krazinski may NOT sit at

the same table

● Simple sorting doesn’t work any more

● Brute force iteration through all possible seating arrangements?
○ ~ 21,000 billion ways of seating 16 people on 16 chairs
○ ~ 63 million distinct table arrangements
○ For each arrangement,

■ Check if valid
■ If valid + corona distance is below smallest one so far:

save solution as best one so far

Brute-force estimate: > 1500 seconds
Would work, but quite time-consuming

SEATING ARRANGEMENT AS AN OPTIMIZATION MODEL UNDER CONSTRAINTS

6

● Minimize total corona distance on each table

● subject to:
○ Each guest sits at one (and only one) table
○ There are no more guests than seats on each table
○ There is at least one male guest at each table
○ There is at least one female guest at each table
○ Julius and Samantha Krazinski do not sit at the same table

An optimization model consists of:

● optimization variables: “decision” variables (to be optimized)
● parameters: given
● constraints: equations between variables and parameters
● an objective function: to be maximized or minimized
● (sets: to index the other model components on)

→express in “standardized” form and pass to optimization solver

Objective function

Constraints

WRITING DOWN THE MODEL IN PYTHON

7

● Pyomo: “Python-based open-source software package that
supports a diverse set of optimization capabilities for formulating,
solving, and analyzing optimization models.”
http://www.pyomo.org/
○ Turn equations into code
○ Send problem to solver
○ Collect results

● COIN-OR CBC solver: Branch-and-Cut solver from the
COmputational INfrastructure for Operations Research program
(https://www.coin-or.org/)

http://www.pyomo.org/
https://www.coin-or.org/

AN EXEMPLARY PYOMO MODEL (simplified syntax)

8

model = Model()

add set:
model.tables = Set([“Avocado”, “Banana”, “Coconut”, ...])

add (indexed) parameter:
model.table_capacity = Param(model.tables, {“Avocado”: 4, ...})

add (indexed) optimization variable:
model.guest_seats_at = Var(model.guests * model.tables, domain=Binary)

add (indexed) constraint:
model.one_table_per_guest = Constraint(model.guests,
rule=sum(model.guest_seats_at[guest, table] for table in model.tables) == 1)

add objective function:
model.corona_distance = Objective(rule=total_corona_distance, sense=minimize)

solve model:
solver.solve(model)

retrieve optimal values:
model.guest_seats_at[“Julius Krazinski”, “Coconut”]
>>> 1.0
model.guest_seats_at[“Samantha Krazinski”, “Coconut”]
>>> 0.0 # Great relief!

DEMO: JUPYTER NOTEBOOK
● https://gitlab.com/Rikerl/optimalwedding

● Jupyter notebook: OptimalWedding.ypnb

9

https://gitlab.com/Rikerl/optimalwedding

HAPPY END

10

● Optimal seating arrangement found after ~10 seconds on my
laptop
○ brute-force iteration : ~ 1500 seconds
○ In practice: interrupt solving after <time_up> and keep best

solution so far

● Pyomo: leveraging the power of Python as a programming
language
○ Load data from Python
○ Return result into Python
○ Alternatives: PuLP, scipy...

● Many real-life industrial situations can be expressed as
optimization models
○ Logistics
○ Economics/finance
○ Energy systems
○ ...

info@trayport.com www.trayport.com

LONDON 7th Floor, 9 Appold Street, London EC2A 2AP, United Kingdom +44 (0)20 7960 5500
SINGAPORE One Raffles Place, Office Tower 1, #31-02, Singapore, 048616 +65 6411 4700
VIENNA Lemböckgasse 49/1A/5.OG, 1230 Vienna, Austria +43 1 609 2290

11

THANK YOU! QUESTIONS?

… meet us at our VIRTUAL
BOOTH!

mailto:info@trayport.com
http://www.trayport.com

