THE OPTIMAL WEDDING (WITH PYOMO)

Writing and solving constrained optimization problems in Python

Tarik Berrada, TRAYPORT

A TMX COMPANY

THE OPTIMAL WEDDING (WITH PYOMO)

Menu

Git-repository: https://gitlab.com/Rikerl/optimal wedding

> Notebook: OptimalWedding.ypnb

A SEATING ARRANGEMENT PROBLEM

16	guests
	guodio

4 tables with 4 seats each

- Each guest is characterized by:
 - Corona index ci
 - Gender (binary, for simplicity)

"How can we arrange the guests so that people with relatively close opinions with regard to Corona sit at the same table ?"

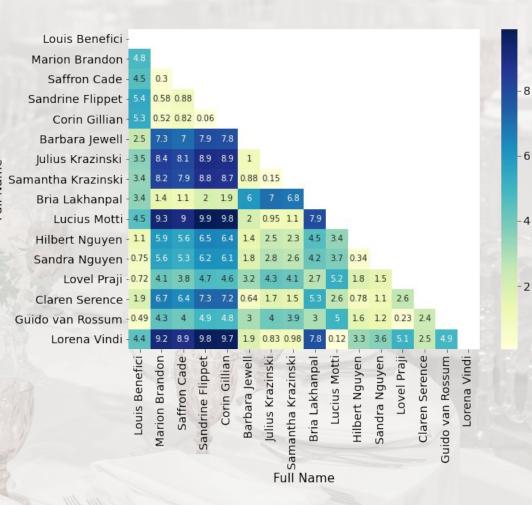
	Corona Index	Gender
Full Name		
Louis Benefici	-0.49	1
Marion Brandon	4.33	1
Saffron Cade	4.03	0
Sandrine Flippet	4.91	1
Corin Gillian	4.85	1
Barbara Jewell	-3.00	1
Julius Krazinski	-4.03	0
amantha Krazinski	-3.88	1
Bria Lakhanpal	2.95	1
Lucius Motti	-4.98	0
Hilbert Nguyen	-1.58	0
Sandra Nguyen	-1.24	1
Lovel Praji	0.23	0
Claren Serence	-2.36	0
Guido van Rossum	0.00	0
Lorena Vindi	-4.86	0

S

Number of Seats

Table Name		
Avocado	4	
Banana	4	
Coconut	4	
Dates	4	

CORONA DISTANCE


 Compute "corona distance" for each pair of guests (g1,g2):

d(g1, g2) = |ci[g1] - ci[g2]|

 \rightarrow distance matrix

"How can we arrange the guests to minimize the total corona distance on each table?"

D(table) = sum(0.5 * d(g1,g2)
 for g1 at table
 for g2 at table)

A SIMPLE SOLUTION

- Simple idea: sort guest by corona index and fill tables accordingly
- But what if we add **new constraints** ?
 - 1) At least one female/one male guest per table
 - 2) Julius Krazinski and Samantha Krazinski may <u>NOT</u> sit at the same table
- Simple sorting doesn't work any more
- Brute force iteration through all possible seating arrangements?
 - \circ ~ 21,000 billion ways of seating 16 people on 16 chairs
 - ~ 63 million distinct table arrangements
 - For each arrangement,
 - Check if valid
 - If valid + corona distance is below smallest one so far: save solution as best one so far

Brute-force estimate: > 1500 seconds Would work, but quite time-consuming

	Corona Index	Gender	table
Full Name			
Lucius Motti	-4.98	0	Avocado
Lorena Vindi	-4.86	0	Avocado
Julius Krazinski	-4.03	0	Avocado
Samantha Krazinski	-3.88	1	Avocado
Barbara Jewell	-3.00	1	Banana
Claren Serence	-2.36	0	Banana
Hilbert Nguyen	-1.58	0	Banana
Sandra Nguyen	-1.24	1	Banana
Louis Benefici	-0.49	1	Coconut
Guido van Rossum	0.00	0	Coconut
Lovel Praji	0.23	0	Coconut
Bria Lakhanpal	2.95	1	Coconut
Saffron Cade	4.03	0	Dates
Marion Brandon	4.33	1	Dates
Corin Gillian	4.85	1	Dates
Sandrine Flippet	4.91	1	Dates

SEATING ARRANGEMENT AS AN OPTIMIZATION MODEL UNDER CONSTRAINTS

Minimize total corona distance on each table

Objective function

• subject to:

- Each guest sits at one (and only one) table
- There are no more guests than seats on each table
- There is at least one male guest at each table
- There is at least one female guest at each table
- Julius and Samantha Krazinski do not sit at the same table

An optimization model consists of:

- optimization variables: "decision" variables (to be optimized)
- parameters: given
- constraints: equations between variables and parameters
- an objective function: to be maximized or minimized
- (sets: to index the other model components on)

→express in "standardized" form and pass to optimization solver

Constraints

WRITING DOWN THE MODEL IN PYTHON

- Pyomo: "Python-based open-source software package that supports a diverse set of optimization capabilities for formulating, solving, and analyzing optimization models." <u>http://www.pyomo.org/</u>
 - Turn equations into code
 - Send problem to solver
 - Collect results
- COIN-OR CBC solver: <u>Branch-and-Cut</u> solver from the <u>CO</u>mputational <u>IN</u>frastructure for <u>O</u>perations <u>Research</u> program (<u>https://www.coin-or.org/</u>)

AN EXEMPLARY PYOMO MODEL (simplified syntax)

TRAYPORT

A TMX COMPANY

```
model = Model()
# add set:
model.tables = Set(["Avocado", "Banana", "Coconut", ...])
# add (indexed) parameter:
model.table_capacity = Param(model.tables, {"Avocado": 4, ...})
# add (indexed) optimization variable:
model.guest_seats_at = Var(model.guests * model.tables, domain=Binary)
# add (indexed) constraint:
model.one_table_per_guest = Constraint(model.guests,
rule=sum(model.guest_seats_at[guest, table] for table in model.tables) == 1)
# add objective function:
model.corona_distance = Objective(rule=total_corona_distance, sense=minimize)
# solve model:
solver.solve(model)
# retrieve optimal values:
model.guest_seats_at["Julius Krazinski", "Coconut"]
>>> 1.0
model.guest_seats_at["Samantha Krazinski", "Coconut"]
>>> 0.0 # Great relief!
```


DEMO: JUPYTER NOTEBOOK

https://gitlab.com/Rikerl/optimalwedding

Jupyter notebook: OptimalWedding.ypnb

HAPPY END

- Optimal seating arrangement found after ~10 seconds on my laptop
 - brute-force iteration : ~ 1500 seconds
 - In practice: interrupt solving after <time_up> and keep best solution so far
- Pyomo: leveraging the power of Python as a programming language
 - Load data from Python
 - Return result into Python
 - Alternatives: PuLP, scipy...
- Many real-life industrial situations can be expressed as optimization models
 - Logistics

. . .

 \cap

- Economics/finance
- Energy systems

	Corona Index	Gender	Table
Full Name			
Barbara Jewell	-3.00	1	Avocado
Julius Krazinski	-4.03	0	Avocado
Lucius Motti	-4. <mark>9</mark> 8	0	Avocado
Lorena Vindi	- <mark>4.8</mark> 6	0	Avocado
Marion Brandon	4.33	1	Banana
Saffron Cade	4.03	0	Banana
Sandrine Flippet	4.91	1	Banana
Corin Gillian	4.85	1	Banana
Samantha Krazinski	-3.88	1	Coconut
Hilbert Nguyen	-1.58	0	Coconut
Sandra Nguyen	-1.24	1	Coconut
Claren Serence	-2.36	0	Coconut
Louis Benefici	-0.49	1	Dates
Bria Lakhanpal	2.95	1	Dates
Lovel Praji	0.23	0	Dates
Guido van Rossum	0.00	0	Dates

K Sponsor 😔 Trayport Trayport's EuroPython 2021 Sponsor Booth

... meet us at our VIRTUAL **BOOTH!**

THANK YOU! QUESTIONS?

TRAYPORT

A TMX COMPANY

info@trayport.com

www.trayport.com

7th Floor, 9 Appold Street, London EC2A 2AP, United Kingdom One Raffles Place, Office Tower 1, #31-02, Singapore, 048616 Lemböckgasse 49/1A/5.OG, 1230 Vienna, Austria

+44 (0)20 7960 5500 +65 6411 4700 +43 1 609 2290