
Gina Häußge // @foosel
EuroPython 2021

Driving 3D Printers 
with Python

Lessons Learned



Gina Häußge

• Software engineer

• Maker

• Hobby baker

• 100% Nerd

• Full time OSS dev

• Creator & maintainer of 
OctoPrint



OctoPrint?

• “The snappy web interface 
for your 3D printer!”

• Open Source, AGPLv3

• ~100k confirmed users, 
unknown actual number

• Backend: Python

• Frontend: HTML & CSS & JS

•👉 octoprint.org



Target audience & platform

• OctoPrint’s audience: Owners of 3D Printers = makers & 
tinkerers, some businesses
• end users

• rarely developers themselves

• Platform: Small single PCB Linux computers
• e.g. Raspberry Pi

• but: platform agnostic!



Challenge #1
Initial installation and keeping things up to date



Initial installation

• Initial installation happens by the end user
•😱 Bootstrap Python & pip install octoprint
•😊 Preconfigured RaspberryPi image: download, flash, wizard, done

• And on something that is not a Pi?
• There be dragons 🐉 but it’s supported

• Huge variety of encountered environments (Linux, Windows, Mac, 
FreeBSD, …)

• Code needs to anticipate that
• E.g. IPv6 dual stack on Windows

• E.g. file locking differences



Keeping things up to date

• OctoPrint
• 😱 pip install -U octoprint
• 😊 Built-in update mechanism for OctoPrint & plugins via pip

• pip
• 😱 You are using pip version X, however version Y is 
available. You should consider upgrading via the 'python 
-m pip install --upgrade pip' command.

• 😊 Scary message hidden, optional auto-update 

• Operating system?
• Some do, some don’t
• Result: unknown environment, sometimes broken environment, 

hard to test, additional support overhead

• “Never touch a running system!” 👎



Lessons Learned

1. Try to control runtime environment but stay flexible.

2. Make updates easy.

3. Use features as motivator for touching a running system.



Challenge #2
Maintaining backwards compatibility for a whole 

ecosystem



Maintaining backwards 
compatibility

• Plugin system since 2015 (1.2.0), over 300 plugins

• Established plugin ecosystem ➡ this is suddenly a platform 
that needs stability
• Disgruntled authors = no ecosystem = disgruntled users

• Problem: Dependency updates with breaking changes

• Problem: Code refactoring

• Problem: Python 2 vs 3 ⚡



Migrating an ecosystem to Python 3

• Preparation & briefing
• Python compatibility information in plugins & repository

• Migration guide for plugin authors

• Early preview versions to test against

• Enforcing Python 2 & 3 compatibility on newly registered plugins

•🚀 OctoPrint 1.4.0 w/ Python 2&3: March 4th 2020

• Ongoing migration
• Users asked to report incompatibilities to plugin authors

• Migration script & new image

• Motivation: Performance, shiny new plugins



Extraction
of compatibility
info from code

(with some workflow
debugging)

Python 3
migration

script makes
switching of 

existing instances
easier

OctoPi 0.18.0
gets released &

defaults to Python 3

2020-03-04 OctoPrint 1.4.0 with Python 3 compatibility



Lessons Learned

1. Read changelogs of dependencies (if you can find them) & 
use version pinning to your advantage.

2. Be prepared to work around breaking changes.

3. Most of all: Keep the eco system worth living in.



Challenge #3
Performance



Performance

• Webinterface + several clients + keeping a printer running + 
plugins + … 🤪

• Locked to one thread at a time (GIL)

• Many CPU bound tasks (message parsing, checksums, file 
analysis, …)

• Multiple processes? Not trivial due to needed data sharing 
(plugins) & cross platform difficulties

• Underlying platform often limited (RPi)



Lessons Learned

1. Extract CPU bound tasks if possible.

2. Be very conservative with resources. 

3. Explore IPC options & native bindings.



Thank you for your attention!

Twitter: @foosel

foosel.net & octoprint.org


