Overview

PyAutoFit & Probabilistic Programming:

- What is probabilistic programming?
- What is PyAutoFit?
- Why PyAutoFit?

Cosmology:

- Description of example use-case - strong gravitational lensing.
- Application to Astronomy data.
- Building multi-level models via Python classes.
Model Fitting

Given some data and a model, finding the set of model parameters that provide the best fit to the data.

\[
P(A|B) = \frac{P(B|A) \ P(A)}{P(B)}
\]
Model Fitting

Model -> Gaussian:
- Centre
- Intensity
- Sigma

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.
Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.
Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.
Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) **Fit to Dataset.**
4) Compute Likelihood.
5) Repeat using non-linear search.
Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) **Compute Likelihood.**
5) Repeat using non-linear search.
Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.
Probabilistic Programming
What is Probabilistic Programming?

Probabilistic programming languages (PPL) provide a framework that allows users to easily specify a probabilistic model and perform inference automatically.

- There are a plethora of PPL's available (e.g. PyMC3, STAN, Pyro).
- All are suited to different problems, have different core features, etc.

They are some of the Github mega projects, so why on Earth are we developing our own PPL?

```python
import pymc3 as pm
X, y = linear_training_data()
with pm.Model() as linear_model:
    weights = pm.Normal("weights", mu=0, sigma=1)
    noise = pm.Gamma("noise", alpha=2, beta=1)
    y_observed = pm.Normal(
        "y_observed",
        mu=X @ weights,
        sigma=noise,
        observed=y,
    )

prior = pm.sample_prior_predictive() posterior = pm.sample() posterior_pred = pm.sample_posterior_predictive(posterior)
```
PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we faced when in Astronomy, for example:
PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we faced when in Astronomy, for example:

- Fitting large and homogenous datasets with an identical model fitting procedure, with tools for processing the large libraries of results output.
PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we faced when in Astronomy, for example:

- Fitting large and homogenous datasets with an identical model fitting procedure, with tools for processing the large libraries of results output.
- Problems where likelihood evaluations are expensive (e.g. run times of days per model-fit), necessitating highly customizable model-fitting pipelines with support for massively parallel computing.
PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we faced when in Astronomy, for example:

- Fitting large and homogenous datasets with an identical model fitting procedure, with tools for processing the large libraries of results output.
- Problems where likelihood evaluations are expensive (e.g. run times of days per model-fit), necessitating highly customizable model-fitting pipelines with support for massively parallel computing.
- Fitting many different models to the same dataset with tools that streamline model comparison.
PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we faced when in Astronomy, for example:

- Fitting large and homogenous datasets with an identical model fitting procedure, with tools for processing the large libraries of results output.
- Problems where likelihood evaluations are expensive (e.g. run times of days per model-fit), necessitating highly customizable model-fitting pipelines with support for massively parallel computing.
- Fitting many different models to the same dataset with tools that streamline model comparison.

PyAutoFit: highly customizable model-fitting software, for big data challenges in the many model regime.
PyAutoFit: Links / Overview
PyAutoFit

GitHub: https://github.com/rhayes777/PyAutoFit

Readthedocs: https://pyautofit.readthedocs.io/en/latest/

Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD
Teach **anyone** how to compose and fit a probabilistic model with PyAutoFit.
PyAutoFit: Classy Interface
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

Aim: use PyAutoFit to fit a Gaussian to the dataset via a non-linear search.
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

Aim: use PyAutoFit to fit a Gaussian to the dataset via a non-linear search.
Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the model component.

```python
class Gaussian:
    def __init__(
        self,
        centre=0.0,  # <- PyAutoFit recognises these
        intensity=0.1,  # <- constructor arguments are
        sigma=0.01,  # <- the Gaussian’s parameters.
    ):
        selfcentre = centre
        selfintensity = intensity
        selfsigma = sigma

    def profile_from_xvalues(self, xvalues):
        transformed_xvalues = xvalues - selfcentre
        return (selfintensity / (self.sigma * (2.0 * np.pi)**0.5)) * np.exp(-0.5 * transformed_xvalues / self.sigma)
```

An instance of the Gaussian class will be available during model fitting.

This method will be used to fit the model to ``data`` and compute a likelihood.
Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the **model component**.
- Write an Analysis class with the **data** and **likelihood function**.

```python
class Analysis(af.Analysis):
    
def __init__(self, data, noise_map):
        self.data = data
        self.noise_map = noise_map

def log_likelihood_function(self, instance):
    ...
    The 'instance' that comes into this method is an instance of the Gaussian class above, with the parameters set to values chosen by the non-linear search.
    ...

    print("Gaussian Instance:"
    print("Centre = ", instance.centre)
    print("Intensity = ", instance.intensity)
    print("Sigma = ", instance.sigma)
    ...
    We fit the `data` with the Gaussian instance, using its "profile_from_xvalues" function to create the model data.
    ...

    xvalues = np.arange(self.data.shape[0])
    model_data = instance.profile_from_xvalues(xvalues=xvalues)
    residual_map = self.data - model_data
    chi_squared_map = (residual_map / self.noise_map) ** 2.0
    log_likelihood = -0.5 * sum(chi_squared_map)
    
    return log_likelihood
```
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the model component.
- Write an Analysis class with the data and likelihood function.
- Combine with your favourite non-linear search to fit the model to the data.

```python
model = af.Model(Gaussian)
analysis = Analysis(data=data, noise_map=noise_map)
emcee = af.Emcee(nwalkers=50, nsteps=2000)
result = emcee.fit(model=model, analysis=analysis)
```
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the **model component**.
- Write an Analysis class with the **data** and **likelihood function**.
- Combine with your favourite **non-linear search** to fit the model to the data.

```python
model = af.Model(Gaussian)
analysis = Analysis(data=data, noise_map=noise_map)
emcee = af.Emcee(nwalkers=50, nsteps=2000)
result = emcee.fit(model=model, analysis=analysis)
```
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

Aim: use **PyAutoFit** to fit a Gaussian to the dataset via a non-linear search.
Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the **model component**.
- Write an Analysis class with the **data** and **likelihood function**.
- Combine with your favourite **non-linear search** to fit the model to the data.
- **Result** object contains all the information you need on your model-fit.

```python
samples = result.samples
print("Final 10 Parameters:")
print(samples.parameter_lists[-10:]

print("Sample 10's third parameter value (Gaussian -> sigma)")
print(samples.parameter_lists[9][2], \\

median_pdf_vector = samples.median_pdf_vector

vector_at_upper_sigma = samples.vector_at_upper_sigma(sigma=3.0)
vector_at_lower_sigma = samples.vector_at_lower_sigma(sigma=3.0)

print("Upper Parameter values w/ error (at 3.0 sigma confidence):")
print(vector_at_upper_sigma)
print("lower Parameter values w/ errors (at 3.0 sigma confidence):")
print(vector_at_lower_sigma, "\n")
```
PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy 1D data of a Gaussian.

- Write a Python class to define the model component.
- Write an Analysis class with the data and likelihood function.
- Combine with your favourite non-linear search to fit the model to the data.
- Result object contains all the information you need on your model-fit.
PyAutoFit: Customization
Python Classes

The use of Python Classes to define the model, analysis and non-linear searches has downsides relative to other PPLs:

- It is a less concise interface.
- It requires a basic understanding of Python classes and object oriented programming (albeit good documentation can alleviate this).

The benefit is it provides a far more customizable model-fitting experience.
Customizing the Model

Full customization of the model parameterization, priors and valid regions of parameter space.

- Default priors can be specified in easy to set up configuration files, so a new user does not need to ‘think’ about them.

```python
from astropy.modeling import models, fitting

gaussian_0 = af.Model(Gaussian)
gaussian_1 = af.Model(Gaussian)

# Manually set prior on each parameter.

gaussian_0.centre = af.UniformPrior(lower_limit=0.0, upper_limit=100.0)
gaussian_0.intensity = af.LogUniformPrior(lower_limit=0.0, upper_limit=1e2)
gaussian_0.sigma = af.GaussianPrior(mean=10.0, sigma=5.0, lower_limit=0.0, upper_limit=np.inf)

# Fix a parameter to a value (reducing dimensionality of parameter space by 1).

gaussian_0.sigma = 0.5

# Link two parameters in a model (reducing dimensionality of parameter space by 1).

gaussian_0.centre = gaussian_1.centre

# Make assertions removing regions of parameter space.

gaussian_1.add_assertion(gaussian_1.sigma > 5.0)

# To make a model with multiple components we use a 'Collection' object.

model = af.Collection(gaussian_0, gaussian_1, gaussian_2)
```
Customizing the Model

Full customization of the model parameterization, priors and valid regions of parameter space.

- **Straightforward** to add many different model-components via inheritance.
- **Composition** makes this concise and scalable.

```python
class Gaussian:
    def __init__(
        self,
        centre=0.0,
        intensity=0.1,
        sigma=0.01,
    ):
        self.centre = centre
        self.intensity = intensity
        self.sigma = sigma

class GaussianKurtosis(Gaussian):
    def __init__(
        self,
        centre=0.0,
        intensity=0.1,
        sigma=0.01,
        kurtosis=0.1,
    ):
        super().__init__(
            centre=centre,
            intensity=intensity,
            sigma=sigma
        )
        self.kurtosis = kurtosis

class Exponential:
    def __init__(
        self,
        centre=0.0,
        intensity=0.1,
        rate=0.01,
    ):
        self.centre = centre
        self.intensity = intensity
        self.rate = rate
```
Customizing the Analysis

The Analysis class can be extended or provide model-specific on-the-fly visualization of the model-fit so far.

- Uses the maximum likelihood model of the search so far.
- For long model-fits can inform you if the fitting has gone wrong early.

class Analysis(af.Analysis):
 def __init__(self, data, noise_map):
 self.data = data
 self.noise_map = noise_map

 def log_liklihood_function(self, instance):
 ...

 def visualize(self, paths, Instance):
 """
 During a model-fit, the `visualize` method is called throughout the non-linear search. The `instance` is maximum log likelihood solution obtained so far and is used to output on-the-fly images.
 """
 xvalues = np.arange(self.data.shape[0])
 model_data = instance.profile_from_xvalues(xvalues=xvalues)
 residual_map = self.data - model_data
 plt.errorbar(
 x=xvalues, y=residual_map, color="k", ecolor="k",
)
 plt.title("1D Residual Map")
 plt.xlabel("x value of profile")
 plt.ylabel("Residual")
 plt.savefig(path.join(paths.image_path, "residual_map.png"))
 plt.close()
Customizing the Search

PyAutoFit supports many non-linear searches (MCMC, nested sampling, optimizers, etc.).

- Full customization of their settings.
- Defaults to configuration file values if not specified.
PyAutoFit: Features
Database

Results of many model fits are output in an sqlite relational database:

- Allocated a **unique identifier** based on the model-fit, such that you can trivially fit many models.
- Database supports advanced queries (e.g. find all results, where this parameter is in this range).
- Results use memory-light Python generators.

You can therefore fit (very) large datasets on a HPC and access the results efficiently via a Jupyter notebook.

```python
agg = af.Aggregator.from_database("database.sqlite")
bulge = agg.lens.bulge
agg_query = agg.query(bulge == LightDeVaucouleurs)

for samples in agg_query.values("samples"):
    print("Maximum Log Likelihood Instance:")
    print(samples.max_log_likelihood_instance)
```
Advanced Modeling Tools

Search Grid Search: Massively parallel grid searches of non-linear searches.

Search Chaining: Write highly customizable model-fitting pipelines that chain together multiple non-linear searches.

Sensitivity Mapping: Simulate and fit many datasets to determine when a more complex model would be accepted via model comparison.

Graphical / Hierarchical Models: Fit for global trends in large datasets by composing and fitting graphical models.
Cosmology: Strong Gravitational Lensing
Strong Gravitational Lensing

- **What the telescope sees**
- **Distant galaxy**
- **Gravitational lens bends the light rays**
- **Quasar (black hole + host galaxy)**
- **Distance: 7.5 billion light years**
- **1.6 billion light years**

Earth
Strong Gravitational Lensing

“Normal” Galaxy:

Strong Gravitational Lens:
Strong Gravitational Lensing Machine Learning

Growing literature on applying machine learning / CNN’s to strong lens datasets.

- Can generate large training datasets cheaply.
PyAutoLens: Open Source Strong Gravitational Lensing

All code publically available (pip / conda), object oriented design, extensive documentation.

GitHub: https://github.com/Jammy2211/PyAutoLens
Readthedocs: https://pyautolens.readthedocs.io/en/latest/
JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02825

The HowToLens Jupyter notebook lectures teach strong lens modeling to beginners (pitched at undergrads and above)!
Teach anyone how to model strong lenses with PyAutoLens.

Perfect for Level 4 students!
Strong Gravitational Lensing

What the telescope sees

Distance: 7.5 billion light years

1.6 billion light years

Quasar
(black hole + host galaxy)

Distant galaxy

Gravitational lens bends the light rays

Earth
PyAutoFit: Model Composition
Model Composition

Break strong lens system into different model components:

Lens Galaxy: Light + Mass

Source Galaxy: Light
Light and Mass Profile classes

Write the **model components** of the problem as **Python classes** using the same API shown previously.

Note how the **model specific** calculations of this problem are functions of the classes.
Light and Mass Profile classes

Mass Profile:

class MassIsothermal:

 def __init__(
 self,
 centre: typing.Tuple[Float, Float] = (0.0, 0.0),
 axis_ratio: float = 1.0,
 angle: float = 0.0,
 mass: float = 1.0,
):

 """Represents an elliptical isothermal mass distribution..."""

 self.centre = centre
 self.axis_ratio = axis_ratio
 self.angle = angle
 self.mass = mass

 def transform_grid_to_reference_frame(self, grid : np.ndarray)...

 def rotate_grid_from_reference_frame(self, grid : np.ndarray) -> np.ndarray:

 def psi_from(self, grid : np.ndarray) -> np.ndarray:

 def deflections_from_grid(self, grid : np.ndarray) -> np.ndarray:

Light Profile:

class LightExponential:

 def __init__(
 self,
 centre: typing.Tuple[Float, Float] = (0.0, 0.0),
 axis_ratio: float = 1.0,
 angle: float = 0.0,
 intensity: float = 0.1,
 effective_radius: float = 0.6,
):

 """The Exponential light profile representing the disk of galaxies..."""

 self.centre = centre
 self.axis_ratio = axis_ratio
 self.angle = angle
 self.intensity = intensity
 self.effective_radius = effective_radius

 def transform_grid_to_reference_frame(self, grid : np.ndarray) -> np.ndarray:

 def grid_to_elliptical_radii(self, grid : np.ndarray) -> np.ndarray:

 def image_from_grid(self, grid : np.ndarray) -> np.ndarray:
Model Composition

Break strong lens system into different model components:

Lens Galaxy: Light + Mass

Source Galaxy: Light
Python Classes

The use of **Python Classes** to define the has a crucial additional benefit.

- It allows for **multi-level model composition**.

Core for PyAutoFit’s **graphical modeling** and **hierarchical modeling** functionality.
Galaxy Class

Combine the mass and light profiles at a specific redshift to make the lens galaxy and source galaxy.

Note how the `image_from_grid` and `deflections_from_grid` methods are included, which use the methods of the individual light and mass profiles.

Redshift = Distance from us in the Universe.
Model Composition

Break strong lens system into different model components:

Lens Galaxy: Light + Mass

Source Galaxy: Light
Composing the Model

Scans every light and mass profile to determine this model has 16 free parameters that the non-linear search fits.

- A user can easily extend the model with more light profiles, mass profiles, etc.

This is the API a user of your model-fitting software is greeted with!
Writing the Analysis

By using **Python classes** as the **model components**, this means we can write a concise likelihood function.

- Cleanly separate the model-specific code (e.g. light profiles, mass profiles, lensing) from the model-fitting code.
- Easy to extend and customize the Analysis class for bespoke model-fitting.

```python
class Analysis(af.Analysis):
    def __init__(self, image, noise_map, psf, grid):
        self.image = image
        self.noise_map = noise_map
        self.psf = psf
        self.grid = grid

    def log_likelihood_function(self, instance):
        """
        The 'instance' that comes into this method contains the 'Galaxy'’s we setup in the model.
        """
        print("Lens Model Instance:" )
        print("Lens Galaxy = ", instance.lens)
        print("Lens Galaxy Bulge = ", instance.lens.bulge)
        print("Lens Galaxy Bulge Centre = ", instance.lens.bulgecentre)
        print("Lens Galaxy Mass Centre = ", instance.lens.masscentre)
        print("Source Galaxy = ", instance.sources)

        lens_image = instance.lens.image_from_grid(grid=self.grid)
        deflections = instance.lens.deflections_from_grid(grid=self.grid)
        source_image = instance.source.image_from_grid(grid=self.grid)

        model_image = instance.image_from_grid(grid=self.grid)
        model_image = self.psf.convolve(model_image)

        residual_map = self.image - model_image
        chi_squared_map = (residual_map / self.noise_map)**2.0
        log_likelihood = -0.5 * sun(chi_squared_map)

        return log_likelihood
```
Model Composition

Straightforward for complex models to be composed and fitted in a scalable and streamlined way:

- Easy to extend model galaxies with many light and mass profiles.
- Or extend the model with many more galaxies.
PyAutoFit: Graphical Models
Hierarchical Statistical Models

Perform detailed modeling of every individual galaxy.

For large datasets flow information up to learn about the Universe.
Cancer in Populations

We build a detailed model of every individual cancer.

Each one tells us extremely small amount of information about the dynamics of that cancer across a population.
Cosmology & Cancer

Performing detailed analysis of large datasets, whilst extracting a small amount of information from each about a global model.
Summary

The statistical techniques used to understand the Universe’s **Cosmology** can be applied to studies of **Cancer**.

PyAutoFit is an open source project with scope way beyond just studies by Astronomers and healthcare scientists!

GitHub: https://github.com/Jammy2211/PyAutoLens

JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02550

Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD
PyAutoFit: Cosmology & Cancer
ConcR

Deep Science Ventures Biotech company

https://www.concr.co/

STFC Opportunities Grant and Innovate UK grant with Roche, UCL and others.
Cancer Cell Model

Multi-level model of cancer growth:

- Separate multiscale complexity of cancer model describing specific sub-behaviours.
- For example, a specific model of how a cell with a specific genetic or epigenetic profiles responds to treatment.
Cancer Tumour Model

Multi-level model of cancer growth:

- The dynamics of a tumour are then modeled as subpopulations of cells with their own genetic and cellular profiles.
- This acts as a high level model that includes the interactions between these different cells.
Patient Outcome

Multi-level model of cancer growth:

- The health of the patient is then governed by the dynamics of multiple tumours and their interactions with the patient.
- This is another higher level model.

The major goal is to perform this analysis on samples of many patients creating a high dimensionality multi-level model.

A variety of datasets are used for this analysis, will detail in a moment.
We began talking to ConcR about 1 year into PyAutoFit develop, saw obvious overlap:

- Composition of multi-level models in a scalable way.
- Customization in how the model is fitted.
- Customization in how different datasets are fitted.
- Same challenge in terms of big data, massively parallel computing.

However, a core feature was missing at the heart of ConcR’s modeling:

- Ability to fit multi-level models in a way that can scale up to 100000+ parameters.
- API for multi-level modeling was non-existent.
Strong Lens Modeling

The focus of my research was fitting individual strong lenses.

- Turns this is a really hard problem, but one we have now solved.

Always knew we would need to fit thousands of lenses learn about galaxy formation and cosmology.

This requires a multi-level model.
Graphical and Hierarchical Models

\[f (M_{\text{Ein}}, Y, f_{\text{dm}}, R_{\text{eff}}, \ldots) \]
Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+ parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.
Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+ parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.

- Fits individual nodes of the graphical model, one-by-one, in parameter spaces of reduced dimensionality.
- Pass information ‘up’ and ‘down’ scouring the model graph, working our way up to the high-level model components.
Example Graphical Model

Figure 10: Graphical representation of the astronomy model. Circles represent random variables and boxes represent fixed parameters. Grayed circles are observed. The zig-zag line indicates that π_j functions as a selector between f_{ij} and g_{ij}. The labels for the fixed prior parameters are omitted for clarity.
Cancer Datasets

Many different types of data are fitted:
- genomic sequencing, cellular imaging, radioimaging, health outcomes, clinical trial data, etc.

On the ‘good side’ of quality / homogeneity for health datasets (no reliance on doctor’s scribbles).

A core selling point of ConcR, via the graphical modeling, is that it can account for missing data.
PyAutoFit: A PPL for Astronomers

The interface of other PPLs is designed for topological models, integrating functions, thermodynamic parameter spaces, etc.

- Great for statisticians, theorists and those with a certain types of model-fitting problems.

- Not so great for those with more data focused model-fitting problems.

```python
import pymc3 as pm

X, y = linear_training_data()
with pm.Model() as linear_model:
    weights = pm.Normal("weights", mu=0, sigma=1)
    noise = pm.Gamma("noise", alpha=2, beta=1)
    y_observed = pm.Normal(
        "y_observed",
        mu=X @ weights,
        sigma=noise,
        observed=y,
    )

prior = pm.sample_prior_predictive()
posterior = pm.sample()
posterior_pred = pm.sample_posterior_predictive(posterior)
```
PyAutoFit: Advanced Features
Search Chaining

Break a model-fit into a **chained** sequence of searches:
Search Chaining

Break a model-fit into a **chained** sequence of searches:

- Search 1: fit model to left Gaussian with **fast non-linear search**.
Search Chaining

Break a model-fit into a **chained sequence** of searches:

- Search 1: fit model to left Gaussian with **fast non-linear search**.
- Search 2: fit model to right Gaussian with fast non-linear search and result of search 1.
Search Chaining

Break a model-fit into a **chained sequence** of searches:

- Search 1: fit model to left Gaussian with **fast non-linear search**.
- Search 2: fit model to right Gaussian with **fast non-linear search** and result of search 1.
- Search 3: Fit both Gaussians simultaneously with **thorough non-linear search and a parameter space starting point** inferred from first two searches.
Grid Search of Non-linear Searches

Break a model-fit into a grid search of searches:

- Support for massively parallel fits.
- Database provides tools for analysing results efficiently.
Graphical and Hierarchical Models

Compose multi-level models for fitting many datasets:

- Simple example of fitting three low signal to noise Gaussians simultaneously.
- Can assume all three Gaussians have same centre, but different intensity / sigma.
Graphical and Hierarchical Models

Can set up unique **Analysis** class, which will pair every dataset with components of the multi-level model:

```python
analysis_0 = a.Analysis(data=data_0, noise_map=noise_map_0)
analysis_1 = a.Analysis(data=data_1, noise_map=noise_map_1)
analysis_2 = a.Analysis(data=data_2, noise_map=noise_map_2)
```

Model is built out of individual model components like before.

```python
centre_shared_prior = af.GaussianPrior(mean=50.0, sigma=30.0)
gaussian_0 = af.Model(m.Gaussian)
gaussian_0.centre = centre_shared_prior
gaussian_0.intensity = af.GaussianPrior(mean=10.0, sigma=10.0)
gaussian_0.sigma = af.GaussianPrior(mean=10.0, sigma=10.0)  # This prior is used by all 3 Gaussians!
prior_model_0 = af.Collection(gaussian= gaussian_0)

gaussian_1 = af.Model(m.Gaussian)
gaussian_1.centre = centre_shared_prior
gaussian_1.intensity = af.GaussianPrior(mean=10.0, sigma=10.0)
gaussian_1.sigma = af.GaussianPrior(mean=10.0, sigma=10.0)  # This prior is used by all 3 Gaussians!
prior_model_1 = af.Collection(gaussian= gaussian_1)
```