
PyAutoFit: Classy
Probabilistic

Programming for
Data Science

James Nightingale
Richard Hayes, Matthew Griffiths

www.jamesnightingale.net

http://www.jamesnightingale.net

Overview
PyAutoFit & Probabilistic Programming:

● What is probabilistic programming?

● What is PyAutoFit?

● Why PyAutoFit?

Cosmology:

● Description of example use-case - strong gravitational lensing.

● Application to Astronomy data.

● Building multi-level models via Python classes.

Model Fitting

Given some data and a
model, finding the set of
model parameters that
provide the best fit to the
data.

Model Fitting

Model -> Gaussian:

- Centre
- Intensity
- Sigma

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Model Fitting

Model -> Gaussian:

- Centre = 60.0
- Intensity = 20.0
- Sigma = 15.0

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.

Probabilistic Programming

What is Probabilistic Programming?

Probabilistic programming languages (PPL) provide a framework that allows users to easily
specify a probabilistic model and perform inference automatically.

- There are a plethora of PPL’s available
(e.g. PyMC3, STAN, Pyro).

- All are suited to different problems,
have different core features, etc.

They are some of the Github mega projects,
so why on Earth are we developing our own
PPL?

PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

● Fitting large and homogenous datasets with an identical

model fitting procedure, with tools for processing the

large libraries of results output.

PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

● Fitting large and homogenous datasets with an identical

model fitting procedure, with tools for processing the

large libraries of results output.

● Problems where likelihood evaluations are expensive

(e.g. run times of days per model-fit), necessitating

highly customizable model-fitting pipelines with support

for massively parallel computing.

PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

● Fitting large and homogenous datasets with an identical

model fitting procedure, with tools for processing the

large libraries of results output.

● Problems where likelihood evaluations are expensive

(e.g. run times of days per model-fit), necessitating

highly customizable model-fitting pipelines with support

for massively parallel computing.

● Fitting many different models to the same dataset with

tools that streamline model comparison.

PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

● Fitting large and homogenous datasets with an identical

model fitting procedure, with tools for processing the

large libraries of results output.

● Problems where likelihood evaluations are expensive

(e.g. run times of days per model-fit), necessitating

highly customizable model-fitting pipelines with support

for massively parallel computing.

● Fitting many different models to the same dataset with

tools that streamline model comparison.

PyAutoFit: highly customizable model-fitting software, for big data

challenges in the many model regime.

PyAutoFit: Links / Overview

PyAutoFit

GitHub: https://github.com/rhayes777/PyAutoFit

Readthedocs: https://pyautofit.readthedocs.io/en/latest/

JOSS Paper: https://joss.theoj.org/papers/10.21105/joss.02550
Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

https://github.com/rhayes777/PyAutoFit
https://pyautofit.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

HowToFit

Teach anyone how to
compose and fit a
probabilistic model with
PyAutoFit.

PyAutoFit: Classy Interface

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting
noisy 1D data of a Gaussian.

Aim: use PyAutoFit to fit a
Gaussian to the dataset via a
non-linear search.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting
noisy 1D data of a Gaussian.

Aim: use PyAutoFit to fit a
Gaussian to the dataset via a
non-linear search.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the
data and likelihood function.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the
data and likelihood function.

- Combine with your favourite
non-linear search to fit the
model to the data.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the
data and likelihood function.

- Combine with your favourite
non-linear search to fit the
model to the data.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting
noisy 1D data of a Gaussian.

Aim: use PyAutoFit to fit a
Gaussian to the dataset via a
non-linear search.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the
data and likelihood function.

- Combine with your favourite
non-linear search to fit the
model to the data.

- Result object contains all the
information you need on your
model-fit.

PyAutoFit: Classy Probabilistic Programming

Illustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the
data and likelihood function.

- Combine with your favourite
non-linear search to fit the
model to the data.

- Result object contains all the
information you need on your
model-fit.

PyAutoFit: Customization

Python Classes

The use of Python Classes to define the model, analysis and non-linear
searches has downsides relative to other PPLs:

- It is a less concise interface.
- It requires a basic understanding of Python classes and object oriented

programming (albeit good documentation can alleviate this).

The benefit is it provides a far more customizable model-fitting experience.

Customizing the Model

Full customization of the model
parameterization, priors and valid
regions of parameter space.

- Default priors can be specified in
easy to set up configuration files, so
a new user does not need to ‘think’
about them.

Customizing the Model

Full customization of the model
parameterization, priors and valid
regions of parameter space.

- Straightforward to add many
different model-components via
inheritance.

- Composition makes this concise
and scalable.

Customizing the Analysis

The Analysis class can be extended or
provide model-specific on-the-fly
visualization of the model-fit so far.

- Uses the maximum likelihood model of
the search so far.

- For long model-fits can inform you if the
fitting has gone wrong early.

Customizing the Search

PyAutoFit supports many non-linear
searches (MCMC, nested sampling,
optimizers, etc.).

- Full customization of their settings.
- Defaults to configuration file values

if not specified.

PyAutoFit: Features

Database

Results of many model fits are output in an
sqlite relational database:

- Allocated a unique identifier based on the
model-fit, such that you can trivially fit many
models.

- Database supports advanced queries (e.g.
find all results, where this parameter is in this
range).

- Results use memory-light Python generators.

You can therefore fit (very) large datasets on a
HPC and access the results efficiently via a
Jupyter notebook.

Advanced Modeling Tools

Search Grid Search: Massively parallel grid searches of non-linear searches.

Search Chaining: Write highly customizable model-fitting pipelines that chain together multiple
non-linear searches.

Sensitivity Mapping: Simulate and fit many datasets to determine when a more complex model
would be accepted via model comparison.

Graphical / Hierarchical Models: Fit for global trends in large datasets by composing and fitting
graphical models.

Cosmology: Strong Gravitational Lensing

Strong Gravitational Lensing

Strong Gravitational Lensing

“Normal” Galaxy: Strong Gravitational Lens:

Strong Gravitational Lensing Machine Learning

Growing literature on applying machine learning / CNN’s to strong lens
datasets.

- Can generate large training datasets cheaply.

PyAutoLens: Open Source Strong Gravitational Lensing

All code publically available (pip / conda), object oriented design, extensive
documentation.

GitHub: https://github.com/Jammy2211/PyAutoLens

Readthedocs: https://pyautolens.readthedocs.io/en/latest/

JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02825

The HowToLens Jupyter notebook lectures teach strong lens modeling to beginners
(pitched at undergrads and above)!

https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02825

HowToLens

Teach anyone how to
model strong lenses with
PyAutoLens.

Perfect for Level 4
students!

Strong Gravitational Lensing

PyAutoFit: Model Composition

Model
Composition
Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light

Light and Mass Profile classes

 Light Profile:

Write the model components of the
problem as Python classes using the
same API shown previously.

Note how the model specific calculations
of this problem are functions of the classes.

Light and Mass Profile classes

 Mass Profile: Light Profile:

Model
Composition
Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light

Python Classes

The use of Python Classes to define the has a crucial additional benefit.

- It allows for multi-level model composition.

Core for PyAutoFit’s graphical modeling and hierarchical modeling
functionality.

Galaxy Class

Combine the mass and light profiles
at a specific redshift to make the
lens galaxy and source galaxy.

Note how the image_from_grid and
deflections_from_grid methods are
included, which use the methods of the
individual light and mass profiles.

Redshift = Distance from us in the Universe.

Model
Composition
Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light

Composing the Model

Scans every light and mass profile to
determine this model has 16 free parameters
that the non-linear search fits.

- A user can easily extend the model with more
light profiles, mass profiles, etc.

This is the API a user of your model-fitting
software is greeted with!

Writing the Analysis

By using Python classes as the model
components, this means we can write a
concise likelihood function.

- Cleanly separate the model-specific code
(e.g. light profiles, mass profiles, lensing)
from the model-fitting code.

- Easy to extend and customize the
Analysis class for bespoke model-fitting.

Model Composition

Straightforward for complex models
to be composed and fitted in a
scalable and streamlined way:

- Easy to extend model galaxies
with many light and mass profiles.

- Or extend the model with many
more galaxies.

 PyAutoFit: Graphical Models

Hierarchical
Statistical
Models

Perform detailed
modeling of every
individual galaxy.

For large datasets
flow information up
to learn about the
Universe.

Cancer in Populations

We build a detailed model of
every individual cancer.

Each one tells us extremely
small amount of information
about the dynamics of that
cancer across a population.

Cosmology & Cancer

Performing detailed analysis of
large datasets, whilst extracting
a small amount of information
from each about a global
model.

Summary

The statistical techniques used to understand the Universe’s Cosmology can be
applied to studies of Cancer.

PyAutoFit is an open source project with scope way beyond just studies by
Astronomers and healthcare scientists!

GitHub: https://github.com/Jammy2211/PyAutoLens

Readthedocs: https://pyautolens.readthedocs.io/en/latest/

JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02550

Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

PyAutoFit: Cosmology &
 Cancer

ConcR

Deep Science Ventures Biotech company

https://www.concr.co/

STFC Opportunities Grant
and Innovate UK grant with
Roche, UCL and others.

https://www.concr.co/

Cancer Cell Model

Multi-level model of cancer growth:

- Separate multiscale complexity of
cancer model describing specific
sub-behaviours.

- For example, a specific model of how
a cell with a specific genetic or
epigenetic profiles responds to
treatment.

Cancer Tumour Model

Multi-level model of cancer growth:

- The dynamics of a tumour are then
modeled as subpopulations of cells
with their own genetic and cellular
profiles.

- This acts as a high level model that
includes the interactions between
these different cells.

Patient Outcome

Multi-level model of cancer growth:

- The health of the patient is then
governed by the dynamics of multiple
tumours and their interactions with
the patient.

- This is another higher level model.

The major goal is to perform this analysis
on samples of many patients creating a
high dimensionality multi-level model.

A variety of datasets are used for this
analysis, will detail in a moment.

Cosmology & Cancer

We began talking to ConcR about 1 year into PyAutoFit develop, saw obvious
overlap:

- Composition of multi-level models in a scalable way.
- Customization in how the model is fitted.
- Customization in how different datasets are fitted.
- Same challenge in terms of big data, massively parallel computing.

However, a core feature was missing at the heart of ConcR’s modeling:

- Ability to fit multi-level models in a way that can scale up to 100000+ parameters.
- API for multi-level modeling was non-existent.

Strong Lens Modeling

The focus of my research was fitting
individual strong lenses.

- Turns this is a really hard problem,
but one we have now solved.

Always knew we would need to fit
thousands of lenses learn about galaxy
formation and cosmology.

This requires a multi-level model.

Graphical and Hierarchical Models

Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+

parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.

Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+

parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.

Building expectation propagation based model-fitting into graphical models
(https://arxiv.org/abs/1412.4869).

- Fits individual nodes of the graphical model, one-by-one, in parameter spaces of
reduced dimensionality.

- Pass information ‘up’ and ‘down’ scouring the model graph, working our way up to the
high-level model components.

https://arxiv.org/abs/1412.4869

Example Graphical Model

Cancer Datasets

Many different types of data are fitted:

- genomic sequencing, cellular imaging,
radioimaging, health outcomes, clinical
trial data, etc.

On the ‘good side’ of quality / homogeneity
for health datasets (no reliance on doctor’s
scribbles).

A core selling point of ConcR, via the
graphical modeling, is that it can account
for missing data.

PyAutoFit: A PPL for Astronomers
The interface of other PPLs is designed for

topological models, integrating functions,

thermodynamic parameter spaces, etc.

- Great for statisticians, theorists and those with a

certain types of model-fitting problems.

- Not so great for those with more data focused

model-fitting problems.

PyAutoFit: Advanced
 Features

Search Chaining

Break a model-fit into a chained
sequence of searches:

Search Chaining

Break a model-fit into a chained
sequence of searches:

- Search 1: fit model to left Gaussian
with fast non-linear search.

Search Chaining

Break a model-fit into a chained sequence
of searches:

- Search 1: fit model to left Gaussian with
fast non-linear search.

- Search 2: fit model to right Gaussian
with fast non-linear search and result of
search 1.

Search Chaining

Break a model-fit into a chained sequence of
searches:

- Search 1: fit model to left Gaussian with fast
non-linear search.

- Search 2: fit model to right Gaussian with fast
non-linear search and result of search 1.

- Search 3: Fit both Gaussians simultaneously
with thorough non-linear search and a
parameter space starting point inferred
from first two searches.

Grid Search of Non-linear Searches

Break a model-fit into a grid search
of searches:

- Support for massively parallel fits.
- Database provides tools for

analysing results efficiently.

Graphical and Hierarchical Models

Compose multi-level models for
fitting many datasets:

- Simple example of fitting three low
signal to noise Gaussians
simultaneously.

- Can assume all three Gaussians
have same centre, but different
intensity / sigma.

Graphical and Hierarchical Models

Can set up unique Analysis class, which will pair every dataset with components of the
multi-level model:

Model is built out of individual model components like before.

