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Overview

PyAutoFit & Probabilistic Programming:

e What is probabilistic programming?
e What is PyAutoFit?
e Why PyAutoFit?

Cosmology:

e Description of example use-case - strong gravitational lensing.
e Application to Astronomy data.

e  Building multi-level models via Python classes.



Model Fitting

Given some data and a
model, finding the set of
model parameters that
provide the best fit to the
data.

P(B|A) P(A)
P(B)

P(A|B) =

120

100

80

60

40

20




Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
S)

Centre
Intensity
Sigma

Draw a set of parameters.
Create Model Gaussian.
Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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1D Gaussian dataset.
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Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
S)

Centre = 60.0
Intensity = 20.0
Sigma =15.0

Draw a set of parameters.
Create Model Gaussian.
Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
5)

Centre = 60.0
Intensity = 20.0
Sigma =15.0

Draw a set of parameters.
Create Model Gaussian.
Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
S)

Centre = 60.0
Intensity = 20.0
Sigma =15.0

Draw a set of parameters.
Create Model Gaussian.
Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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Model-data fit to 1D Gaussian data.
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Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
5)

Centre = 60.0
Intensity = 20.0
Sigma =15.0

Draw a set of parameters.
Create Model Gaussian.
Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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Model Fitting

Model -> Gaussian:

1)
2)
3)
4)
5)

Centre = 60.0
Intensity = 20.0
Sigma =15.0

Draw a set of parameters.

Create Model Gaussian.

Fit to Dataset.

Compute Likelihood.

Repeat using non-linear search.
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Emcee model fit to 1D Gaussian dataset.
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Probabilistic Programming



What is Probabilistic Programming?

Probabilistic programming languages (PPL) provide a framework that allows users to easily
specify a probabilistic model and perform inference automatically.

- There are a plethora of PPL’s available
(e.g. PyMC3, STAN, Pyro).

- All are suited to different problems,
have different core features, etc.

They are some of the Github mega projects,
so why on Earth are we developing our own
PPL?

import pymc3 as pm

X, y = linear_training_data()
with pm.Model() as linear_model:
weights = pm.Normal(“weights", mu=8, sigma=1)
noise = pm.Gamma(“noise"”, alpha=2, beta=1)
y_observed = pm.Normal(
"y _observed"”,
mu=X @ weights,
sigma=noise,
observed=y,

)

prior = pm.sample_prior_predictive()
posterior = pm.sample()
posterior_pred = pm.sample_posterior_predictive(posterior)



PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:




PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

e Fitting large and homogenous datasets with an identical
model fitting procedure, with tools for processing the

large libraries of results output.




PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

e Fitting large and homogenous datasets with an identical
model fitting procedure, with tools for processing the
large libraries of results output.

e Problems where likelihood evaluations are expensive
(e.g. run times of days per model-fit), necessitating
highly customizable model-fitting pipelines with support

for massively parallel computing.




PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

e Fitting large and homogenous datasets with an identical
model fitting procedure, with tools for processing the
large libraries of results output.

e Problems where likelihood evaluations are expensive
(e.g. run times of days per model-fit), necessitating
highly customizable model-fitting pipelines with support
for massively parallel computing.

e Fitting many different models to the same dataset with

tools that streamline model comparison.




PyAutoFit: A PPL for Astronomers (and data science!)

Existing PPL’s not suited to the model fitting challenges we
faced when in Astronomy, for example:

e Fitting large and homogenous datasets with an identical
model fitting procedure, with tools for processing the
large libraries of results output.

e Problems where likelihood evaluations are expensive
(e.g. run times of days per model-fit), necessitating
highly customizable model-fitting pipelines with support
for massively parallel computing.

e Fitting many different models to the same dataset with

tools that streamline model comparison.

PyAutoFit: highly customizable model-fitting software, for big data

challenges in the many model regime.



PyAutoFit: Links / Overview



PyAutoFit

GitHub: https://github.com/rhayes777/PyAutoFit

Readthedocs: https://pyautofit.readthedocs.io/en/latest/

JOSS Paper:_https://joss.theoj.ora/papers/10.21105/joss.02550
Binder: https://mvybinder.org/v2/gh/Jammy2211/autofit workspace/HEAD



https://github.com/rhayes777/PyAutoFit
https://pyautofit.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

HowToFit

Teach anyone how to

compose and fit a

probabilistic model with

PyAutoFit.

In [14]:

In [15]:

We can also use it to get a model instance of the median_pdf model, which is the model where each parameter is the value estimated from the probability
distribution of parameter space.

M mp_instance = result.samples.median_pdf_instance
print()
print("Median PDF Model:\n")
print(“Centre ", mp_instance.centre)
print("Intensity = ", mp_instance.intensity)
print("Sigma = ", mp_instance.sigma)

Median PDF Model:

Centre = 49.92285569756167
Intensity = 24.974961843717058
Sigma = 9.969794911012947

The Probability Density Functions (PDF's) of the results can be plotted using the Emcee's visualization tool corner.py , which is wrapped via the
EmceePlotter object.

The PDF shows the 1D and 2D probabilities estimated for every parameter after the model-fit. The two dimensional figures can show the degeneracies
between different parameters, for example how increasing ¢ and decreasing the intensity I can lead to similar likelihoods and probabilities.

M emcee_plotter = aplt.EmceePlotter(samples=result.samples)
emcee_plotter.corner()

2021-07-26 16:42:47,675 - root - WARNING - Too few points to create valid contours
2021-07-26 16:42:47,712 - root - WARNING - Too few points to create valid contours
2021-07-26 16:42:47,737 - root - WARNING - Too few points to create valid contours
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PyAutoFit: Classy Interface



PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting 1D Gaussian dataset.
noisy 1D data of a Gaussian. 10 1
Aim: use PyAutoFit to fit a 08 1
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Gaussian to the dataset via a 2 06
non-linear search. c
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PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting Emcee model fit to 1D Gaussian dataset.
noisy 1D data of a Gaussian. 10
Aim: use PyAutoFit to fit a 08
. . oy
Gaussian to the dataset via a 2 061
non-linear search. -
go
a.
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PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting noisy class Gaussian:
1D data of a Gaussian. def __init_(
self,
. . centre=0.0, # <- PyAutoFit recognises these
- erte a Python ClaSS to deflne intensity=0.1, # <- constructor arguments are
the mOdel component sigma=6.01, # <- the Gaussian's parameters.
. y:

self.centre = centre
self.intensity = intensity
self.sigma = sigma

An instance of the Gaussian class will be available during model fitting.

This method will be used to fit the model to "““data”” and compute a likelihood.

def profile from_xvalues(self, xvalues):
transformed_xvalues = xvalues - self.centre

return (self.intensity / (self.sigma * (2.© * np.pi) ** @.5)) * \
np.exp(-8.5 * transformed_xvalues / self.sigma)



PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting noisy SUESERG P RRCERE
1D data Of a GaUSSian_ def _ init_ (self, data, noise_map):

self.data = data
self.noise_map = noise_map

- Write a Python class to define
the model component.
. : . The ‘instance’ that comes into this method is an instance of the Gaussian class
- erte an AnalyS|S ClaSS W|th the :a.??ve, with the parameters set to values chosen by the non-linear search.
data and likelihood function.

def log_likelihood_function(self, instance):

print("Gaussian Instance:")
print("Centre = ", instance.centre)
print("Intensity = ", instance.intensity)
print("Sigma = ", instance.sigma)

We fit the ““data’” with the Gaussian instance, using its
"profile_from_xvalues" function to create the model data.

xvalues = np.arange(self.data.shape[8])

model_data = instance.profile_from_xvalues(xvalues=xvalues)
residual_map = self.data - model_data

chi_squared_map = (residual_map / self.noise_map) ** 2.8

log_likelihood = -8.5 * sum(chi_squared_map)

return log likelihood



PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting noisy model = af.Model(Gaussian)
1D data of a Gaussian. analysis = Analysis(data=data, noise_map=noise map)
- Write a Python class to define emcee = af.Emcee(nwalkers=58, nsteps=2000)

the model component.
- Write an Analysis class with the
data and likelihood function.
- Combine with your favourite
non-linear search to fit the
model to the data.

result = emcee.fit(model=model, analysis=analysis)
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PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting noisy
1D data of a Gaussian.

samples = result.samples

print(“Final 18 Parameters:™)
_ Write a Python class to define print(samples.parameter_lists[-18:])
the model component. pr%nt("Sample 16" s third ;?ar‘ameter- value (Gaussian -> sigma)")
Write an Ana|ysi$ class with the print(samples.parameter_lists[2][2], "\n")
. . . i f = Z i f v
data and likelihood functlon. median_pdf vector = samples.median_pdf_vector
-  Combine with your favourite vector_at_upper_sigma = samples.vector_at_upper_sigma(sigma=3.0)

. . vector_at_lower_sigma = samples.vector_at lower_sigma(sigma=3.@)
non-linear search to fit the

print("Upper Parameter values w/ error (at 3.0 sigma confidence):")
mOdel tO the data' print(vector_at_upper_sigma)
-  Result object contains all the print("lower Parameter values w/ errors (at 3.8 sigma confidence):")

print(vector_at_lower_sigma, "\n")

information you need on your
model-fit.



PyAutoFit: Classy Probabilistic Programming

lllustrative example, fitting noisy
1D data of a Gaussian.

- Write a Python class to define
the model component.

- Write an Analysis class with the &
data and likelihood function.

- Combine with your favourite *
non-linear search to fit the
model to the data.

- Result object contains all the
information you need on your ©
model-fit.

I

sigma
9,

9




PyAutoFit: Customization



Python Classes
The use of Python Classes to define the model, analysis and non-linear
searches has downsides relative to other PPLs:

- Itis aless concise interface.
- It requires a basic understanding of Python classes and object oriented

programming (albeit good documentation can alleviate this).

The benefit is it provides a far more customizable model-fitting experience.



Customizing the Model

gaussian_@ = af.Model(Gaussian)
gaussian_1 = af.Model(Gaussian)

Full customization of the model
parameterization, priors and valid
gaussian_O.centre = af.UniformPrior(lower_limit=0.0, upper_limit=100.0)
regions of parameter space. P e e e e i

Manually set prior on each parameter.

Fix a parameter to a value (reducing dimensionality of parameter space by 1).

- Default priors can be specified in
easy to set up configuration files, so - | -
a new user does not need to ‘think' .o T e
about them.

gaussian_©.sigma = ©.5

Make assertions removing regions of parameter space.

gaussian_1.add_assertion(gaussian_1.sigma > 5.8)

To make a model with multiple components we use a “Collection”™ object.

model = af.Collection(gaussian_@=gaussian_@, gaussian_l=gaussian_1)



class Gaussian:

def __init_ (
self,
centre=0.0,

Customizing the Model

sigma=0.01,
)i

self.centre = centre
self.intensity = intensity

Full customization of the model R

. . - - class GaussianKurtosis(Gaussian):
parameterization, priors and valid gy
regions of parameter space. erean

intensity=6.1,
sigma=0.01,

- Straightforward to add many | hertesiso.n,
different model-components via super()._init_(

centre=centre,

inheritance. e
ngn . . )
- Composition makes this concise I
and Scalable- class Exponential:

def _ init_ (
self,
centre=0.0,
intensity=0.1,
rate=0.01,

self.centre = centre
self.intensity = intensity
self.rate = rate



Customizing the Analysis

The Analysis class can be extended or
provide model-specific on-the-fly
visualization of the model-fit so far.

- Uses the maximum likelihood model of
the search so far.

- For long model-fits can inform you if the
fitting has gone wrong early.

class Analysis(af.Analysis):

def

def

def

__init_ (self, data, noise_map):

self.data = data
self.noise_map = noise_map

log_likelihood_function(self, instance):

visualize(self, paths, instance):

During a model-fit, the “visualize® method is called throughout the
non-linear search. The “instance® is maximum log likelihood solution
obtained so far and is used to output on-the-fly images.

xvalues = np.arange(self.data.shape[8])

model_data = instance.profile from xvalues(xvalues=xvalues)
residual_map = self.data - model_data

plt.errorbar(
x=xvalues, y=residual_map, color="k", ecolor="k",
)
plt.title("1D Residual Map")
plt.xlabel("x value of profile")
plt.ylabel("Residual")
plt.savefig(path.join(paths.image_path, "residual_map.png"))
plt.clf()



Customizing the Search

PyAutoFit supports many non-linear rrcer - ot tacent
searches (MCMC, nested sampling, nase="exanple._ncac”,

nwalkers=58,
nsteps=20668,

optl mize rs’ etc')' initializer=af.InitializerBall(lower_limit=8.49, upper_limit=8.51),

auto_correlations_settings=af.AutoCorrelationsSettings(

- Full customization of their settings. g e
- Defaults to configuration file values Sl

if not specified. )



PyAutoFit: Features



Database

Results of many model fits are output in an
sqlite relational database:

- Allocated a unique identifier based on the
model-fit, such that you can trivially fit many
models.

- Database supports advanced queries (e.g.
find all results, where this parameter is in this
range).

- Results use memory-light Python generators.

You can therefore fit (very) large datasets on a
HPC and access the results efficiently via a
Jupyter notebook.

agg = af.Aggregator.from _database("database.sglite")

bulge = agg.lens.bulge
agg query = agg.query(bulge == LightDeVaucouleurs)

for samples in agg query.values("samples"):

print("Maximum Log Likelihood Instance:")
print(samples.max_log likelihood_instance)



Advanced Modeling Tools

Search Grid Search: Massively parallel grid searches of non-linear searches.

Search Chaining: Write highly customizable model-fitting pipelines that chain together multiple
non-linear searches.

Sensitivity Mapping: Simulate and fit many datasets to determine when a more complex model
would be accepted via model comparison.

Graphical / Hierarchical Models: Fit for global trends in large datasets by composing and fitting
graphical models.



Cosmology: Strong Gravitational Lensing



Strong Gravitational Lensing

Distance: 7.5 billion light years

What the telescope sees 1.6 billion light years

Quasar
(black hole + host galaxy)
""""""""""""""""""""""""""""""" 5 : Earth
‘ . S - - \:{fgla-;ﬁ'?
L | R

Distant galaxy

- Gravitational lens bends the
light rays




Strong Gravitational Lensing

“Normal” Galaxy: Strong Gravitational Lens:




Strong Gravitational Lensing Machine Learning
Growing literature on applying machine learning / CNN’s to strong lens
datasets.

- Can generate large training datasets cheaply.
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PyAutoLens: Open Source Strong Gravitational Lensing

All code publically available (pip / conda), object oriented design, extensive
documentation.

GitHub: htips:/github.com/Jammy2211/PyAutoLens
Readth ed OCS. nhttps://pyautolens.readthedocs.io/en/latest/

JOSS Paper: htips:ijoss.theoj.org/papers/10.21105/j0ss.02825

The HowTolLens Jupyter notebook lectures teach strong lens modeling to beginners
(pitched at undergrads and above)!


https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02825

HowTolLens

Teach anyone how to
model strong lenses with
PyAutolLens.

Perfect for Level 4
students!

In: [ J:

In[ ]:

Tutorial 4: Planes

So far, we have learnt how to combine light profiles, mass profiles and galaxies to perform various calculations. In this tutorial we'll use these objects to perform our first
ray-tracing calculations!

A strong gravitational lens is a system where two (or more) galaxies align perfectly down our line of sight from Earth such that the foreground galaxy's mass (represented
as mass profiles) deflects the light (represented as light profiles) of a background source galaxy(s).

When the alignment is just right and the lens is massive enough, the background source galaxy appears multiple times. The schematic below shows such a system, where
light-rays from the source are deflected around the lens galaxy to the observer following multiple distinct paths.

Image Plane Source Plane
(z=0.5) (z=1.0)

Observer
(z =0, Earth)

Observer

Lens Galaxy(s) Source Galaxy(s)

< Light paths unaffected by gravity
“— Light paths affected by gravity

As an observer, we don't see the source's true appearance (e.g. a round blob of light). Instead, we only observe its light after it has been deflected and lensed by the
foreground galaxies.

In the schematic above, we used the terms 'image-plane’ and 'source-plane'. In lensing, a 'plane’ is a collection of galaxies at the same redshift (meaning that they are
physically parallel to one another). In this tutorial, we'll use the Plane object to create a strong lensing system like the one pictured above. Whilst a plane can contain any
number of galaxies, in this tutorial we'll stick to just one lens galaxy and one source galaxy.

%matplotlib inline

from pyprojroot import here

workspace_path = str(here())

%cd orkspace_path

print(f"Working Directory has been set to " {workspace_path} ")

import autolens as al
import autolens.plot as aplt

Initial Setup
As always, we need a 2D grid of (y, x) coordinates.

However, we can now think of our grid as the coordinates that we are going to 'trace' from the image-plane to the source-plane. We name our grid the image_plane_grid
to reflect this.

image_plane_grid = al.Grid2D.uniform(shape_native=(100, 1080), pixel_scales=0.85)

We will also name our Galaxy objects lens galaxy and source galaxy. to reflect their role in the schematic above.



Strong Gravitational Lensing

Distance: 7.5 billion light years

What the telescope sees 1.6 billion light years

Quasar
(black hole + host galaxy)
""""""""""""""""""""""""""""""" 5 : Earth
‘ . S - - \:{fgla-;ﬁ'?
L | R

Distant galaxy

- Gravitational lens bends the
light rays




PyAutoFit: Model Composition



Model
Composition

Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light

"/Foreground .

galaxy

M/

Background
galaxy

\
I )
[— )
/J‘ Background

/’ galaxy

[ \
\ (G Light )
) I 3
/ﬂ/ (r"/“'*——r\,,/ h
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Light and Mass Profile classes

Light Profile:

class LightDeVaucouleurs:

Write the model components of the g
problem as Python classes using the v o it los, o] = 1.3, 8.0,

axis_ratio : float = 1.8,
angle : float = 8.8,

same API shown previously.

effective_radius: float = 8.6,
):

Note how the model specific calculations .
of this problem are functions of the classes.

elf.intensity = intensity
self.effective_radius = effective_radius

def transform_grid_to_reference_frame(self, grid : np.ndarray):...

def grid_to_elliptical_radii(self, grid : np.ndarray) -> np.ndarray:...

def|image_from_grid{self, grid : np.ndarray) -> np.ndarray:...

"""The De Vaucouleurs light profile representing the bulge of galaxies...."""



Light and Mass Profile classes

Mass Profile:

class MassIsothermal:

de

de

de

de

de

£

4

£

-+

“+

__init__(

self,

centre: typing.Tuple[float, float] = (8.8, B8.8),
axis_ratio : float = 1.8,

angle : float = B.8,
mass: float = 1.8,

"“"Represents an elliptical isothermal mass distribution....™""

f.centre = centre
.axis_ratio = axis_ratio
.angle = angle

1f.mass = mass

transform_grid_to_reference_frame(self, grid : np.ndarray):...
rotate_grid_from_reference_frame(self, grid :

psi_from(self, grid :

deflections_from_grid|(self, grid :

np.ndarray) -> np.ndarray:...

np.ndarray) -> np.ndarray:...

np.ndarray) -> np.ndarray:...

Light Profile:

class LightExponential:

def

def transform_grid_to_reference_frame(self, grid :
def grid_to_elliptical_radii(self, grid :

def [image_from_grid|(self, grid :

=Aanits(

self,

centre: typing.Tuple[float, float] = (8.8, B8.8),
axis_ratio :
angle : float = 8.8,
intensity: float = 8.1,
effective_radius: float = 8.6,

float = 1.8,

“"The Exponential light profile representing the disk of galaxies....™™"

f.centre = centre

f.axis_ratio = axis_ratio

f.angle = angle

f.intensity = intensity
f.effective_radius = effective_radius

np.ndarray) -> np.ndarray:...

np.ndarray) -> np.ndarray:...

np.ndarray) -> np.ndarray:...



Model
Composition

Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light
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Python Classes

The use of Python Classes to define the has a crucial additional benefit.

- It allows for multi-level model composition.

Core for PyAutoFit’s graphical modeling and hierarchical modeling
functionality.



Galaxy Class

Combine the mass and light profiles
at a specific redshift to make the
lens galaxy and source galaxy.

Note how the image_from_grid and
deflections_from_grid methods are
included, which use the methods of the
individual light and mass profiles.

Redshift = Distance from us in the Universe.

class Galaxy:

def __init__(
self,
redshift: float,
light_profiles: Optional[List] = None,
mass_profiles: Optional[List] = None,

"""A galaxy, which contains light and mass profiles at a specified redshift...

self.redshift = redshift
self.light_profiles = light_profiles
self.mass_profiles = mass_profiles

def [image_from_grid|(self, grid : np.ndarray) -> np.ndarray:

mum -

if len(self.light_profiles) > @:
return sum(
map(lambda p: p.image_from_grid(grid=grid), self.light_profiles)
)
return np.zeros((grid.shape[8],))

def|deflections_fron_gridkseLf, grid : np.ndarray) -> np.ndarray:

if len(self.mass_profiles) > B8:
return sum(
map(lambda p: p.deflections_from_grid(grid=grid), self.mass_profiles)
)
return np.zeros((grid.shape[8], 2))



Model
Composition

Break strong lens
system into different
model components:

Lens Galaxy: Light +
Mass

Source Galaxy: Light
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Composing the Model

Scans every light and mass profile to
determine this model has 16 free parameters
that the non-linear search fits.

- Auser can easily extend the model with more
light profiles, mass profiles, etc.

This is the API a user of your model-fitting
software is greeted with!

import autofit as af

lens_galaxy model = af.Model(
Galaxy,
redshift=6.5,
bulge=LightDeVaucouleurs,
mass=MassIsothermal

)

source_galaxy model = af.Model(
Galaxy,
redshift=1.0,
disk=LightExponential

)

model = af.Collection(
lens=1lens_galaxy model,
source=source_galaxy_model



class Analysis(af.Analysis):
def _ init_ (self, image, noise_map, psf, grid):

g m n self.im?ge = image .
Writing the Analysis e T
self.grid = grid

def log_likelihood_function(self, instance):

By using Python classes as the model
CompOnentS, thiS means we can Write a LZeS;iE;t;:cir']et:z;e;c.)mes into this method contains the “Galaxy 's
concise likelihood function.

print("Lens Model Instance:")
print("Lens Galaxy = ", instance.lens)

_ Cleanly Separate the model_speCIfIC COde print("Lens Galaxy Bulge = ", instfnce.lens.bulge)

print("Lens Galaxy Bulge Centre = ", instance.lens.bulge.centre)
print("Lens Galaxy Mass Centre = ", instance.lens.mass.centre)

(e.q. light profiles, mass profiles, lensing) DIHE (TSciee Galaxy' = 7, nstance  sources)
from the model-fitting code.
. The methods of the “Galaxy™ class are available, making it easy to fit
- Easy to extend and customize the iToErn
Analysis class for bespoke model-fitting.

lens_image = instance.lens.fimage_from_grid[grid=self.grid)

deflections = instance.lens|deflections_frpm_grid(grid=self.grid)
source_grid = self.grid - dgjflections
source_image = instance.sourre.lmage_from_grid griid=source_grid)

model_image = lens_image + sourfce_image

model_image = self.psf.convolve(model_image)

residual_map = self.image - model_image
chi_squared_map = (residual_map / self.noise_map) ** 2.0
log_likelihood = -8.5 * sum(chi_squared_map)

return log_likelihood



Model Composition

Straightforward for complex models
to be composed and fitted in a
scalable and streamlined way:

- Easy to extend model galaxies
with many light and mass profiles.

- Or extend the model with many
more galaxies.




PyAutoFit: Graphical Models
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Cancer in Populations

We build a detailed model of
every individual cancer.

Each one tells us extremely
small amount of information
about the dynamics of that
cancer across a population.



Cosmology & Cancer

Performing detailed analysis of
large datasets, whilst extracting
a small amount of information
from each about a global
model.

Cancer




Summary
The statistical techniques used to understand the Universe’s Cosmology can be
applied to studies of Cancer.

PyAutoFit is an open source project with scope way beyond just studies by
Astronomers and healthcare scientists!

GitHub: https/github.comiammy2211/PyAutoLens

Readth ed OCS. nhttps://pyautolens.readthedocs.io/en/latest/

JOSS Paper: htips:ijoss.theoj.org/papers/10.21105/0ss.02550

Binder: https://mybinder.ora/v2/gh/Jammy2211/autofit_workspace/HEAD



https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

PyAutoFit: Cosmology &
Cancer



ConcR

Deep Science Ventures Biotech company

https://www.concr.co/

STFC Opportunities Grant
and Innovate UK grant with
Roche, UCL and others.



https://www.concr.co/

Cancer Cell Model

Multi-level model of cancer growth:

- Separate multiscale complexity of
cancer model describing specific
sub-behaviours.

- For example, a specific model of how
a cell with a specific genetic or
epigenetic profiles responds to
treatment.

feature of
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Cancer Tumour Model

Multi-level model of cancer growth:

- The dynamics of a tumour are then
modeled as subpopulations of cells
with their own genetic and cellular
profiles.

- This acts as a high level model that
includes the interactions between
these different cells.
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Patient Outcome

Multi-level model of cancer growth:

- The health of the patient is then
governed by the dynamics of multiple
tumours and their interactions with
the patient.

- This is another higher level model.

The major goal is to perform this analysis
on samples of many patients creating a
high dimensionality multi-level model.

A variety of datasets are used for this
analysis, will detail in a moment.
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Cosmology & Cancer

We began talking to ConcR about 1 year into PyAutoFit develop, saw obvious
overlap:

Composition of multi-level models in a scalable way.
Customization in how the model is fitted.

Customization in how different datasets are fitted.

Same challenge in terms of big data, massively parallel computing.

However, a core feature was missing at the heart of ConcR’s modeling:

- Ability to fit multi-level models in a way that can scale up to 100000+ parameters.
- API for multi-level modeling was non-existent.
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Strong Lens Modeling
The focus of my research was fitting
individual strong lenses.

- Turns this is a really hard problem,
but one we have now solved.

Always knew we would need to fit
thousands of lenses learn about galaxy
formation and cosmology.

This requires a multi-level model.
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Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+

parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.



Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+

parameters.
- Cannot fit using traditional non-linear search due to curse of dimensionality.

Building expectation propagation based model-fitting into graphical models
(https://arxiv.org/abs/1412.4869).

- Fits individual nodes of the graphical model, one-by-one, in parameter spaces of

reduced dimensionality.
- Pass information ‘up’ and ‘down’ scouring the model graph, working our way up to the

high-level model components.



https://arxiv.org/abs/1412.4869
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Figure 10: Graphical representation of the astronomy model. Circles represent random variables
and boxes represent fized parameters. Grayed circles are observed. The zig-zag line indicates that m;
functions as a selector between f;; and g;j. The labels for the fized prior parameters are omitted for
clarity.
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Many different types of data are fitted: model

$

- genomic sequencing, cellular imaging,
radioimaging, health outcomes, clinical
trial data, etc.

On the ‘good side’ of quality / homogeneity
for health datasets (no reliance on doctor’s

graphical modeling, is that it can account
for missing data.

scribbles). N
data JL
A core selling point of ConcR, via the




PyAutoFit: A PPL for Astronomers

The interface of other PPLs is designed for
topological models, integrating functions,

thermodynamic parameter spaces, etc.

- Great for statisticians, theorists and those with a

certain types of model-fitting problems.

- Not so great for those with more data focused

model-fitting problems.

import pymc3 as pm

X, y = linear_training_data()
with pm.Model() as linear_model:
weights = pm.Normal(“weights", mu=8, sigma=1)
noise = pm.Gamma(“noise"”, alpha=2, beta=1)
y_observed = pm.Normal(
"y _observed"”,
mu=X @ weights,
sigma=noise,
observed=y,

)

prior = pm.sample_prior_predictive()
posterior = pm.sample()
posterior_pred = pm.sample posterior_predictive(posterior)



PyAutoFit: Advanced
Features



Search Chaining

Break a model-fit into a chained 1D Gaussian Data With two Gaussians split apart.
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Search Chaining
Break a model-fit into a chained
sequence of searches:

- Search 1: fit model to left Gaussian
with fast non-linear search.
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Search Chaining

Break a model-fit into a chained sequence
of searches:

- Search 1: fit model to left Gaussian with
fast non-linear search.

- Search 2: fit model to right Gaussian
with fast non-linear search and result of
search 1.

Profile intensity
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Search 2 fit to right Gaussian.
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Search Chaining

Break a model-fit into a chained sequence of
searches:

- Search 1: fit model to left Gaussian with fast
non-linear search.

- Search 2: fit model to right Gaussian with fast
non-linear search and result of search 1.

- Search 3: Fit both Gaussians simultaneously
with thorough non-linear search and a
parameter space starting point inferred
from first two searches.

Profile intensity

Search 3 fit to both Gaussian.
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Grid Search of Non-linear Searches

Lens 1: Subhalo Mass = 101°9°Mm

3.08 120

Break a model-fit into a grid search
of searches:

X 100

- Support for massively parallel fits. L4 I

- Database provides tools for
analysing results efficiently.

0.0

y (arcsec)

-1.54

20

-3.08 -1.54 0.0 1.54 3.08
X (arcsec)



Graphical and Hierarchical Models

Compose multi-level models for
fitting many datasets:

- Simple example of fitting three low
signal to noise Gaussians
simultaneously.

- Can assume all three Gaussians
have same centre, but different
intensity / sigma.




Graphical and Hierarchical Models

Can set up unique Analysis class, which will pair every dataset with components of the
multi-level model:

analysis_@ = a.Analysis(data=data_@, noise_map=noise_map_0)
analysis_1 = a.Analysis(data=data_1l, noise_map=noise_map_1)
analysis_2 = a.Analysis(data=data_2, noise_map=noise_map_2)

Model is built out of individual model components like before.

centre_shared_prior = af.GaussianPrior(mean=50.9, sigma=30.8)

gaussian_@ = af.Model(m.Gaussian)

gaussian_B.centre = centre_shared_prior

gaussian_B.intensity = af.GaussianPrior(mean=18.2, sigmz=10.0)

gaussian_B.sigma = af.GaussianPrior(mean=18.8, sigma=18.8) # This prior is used by all 3 Gaussians!

prior_model_@ = af.Collection(gaussian=gaussian_0)

gaussian_1 = af.Model(m.Gaussian)

gaussian_1.centre = centre_shared_prior

gaussian_1.intensity = af.GaussianPrior(mean=18.2, sigmz=10.0)

gaussian_1.sigma = af.GaussianPrior(mean=18.8, sigma=18.8) # This prior is used by all 3 Gaussians!

prior_model_1 = af.Collection(gaussian=gaussian_1)



