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Overview
PyAutoFit & Probabilistic Programming:

● What is probabilistic programming?

● What is PyAutoFit?

● Why PyAutoFit?

Cosmology:

● Description of example use-case - strong gravitational lensing.

● Application to Astronomy data.

● Building multi-level models via Python classes.



Model Fitting

Given some data and a 
model, finding the set of 
model parameters that 
provide the best fit to the 
data.



Model Fitting

Model -> Gaussian:

- Centre
- Intensity
- Sigma

1) Draw a set of parameters.
2) Create Model Gaussian.
3) Fit to Dataset.
4) Compute Likelihood.
5) Repeat using non-linear search.
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What is Probabilistic Programming?

Probabilistic programming languages (PPL) provide a framework that allows users to easily 
specify a probabilistic model and perform inference automatically.

- There are a plethora of PPL’s available
(e.g. PyMC3, STAN, Pyro).

- All are suited to different problems,
have different core features, etc.

They are some of the Github mega projects,
so why on Earth are we developing our own 
PPL?
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faced when in Astronomy, for example:
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PyAutoFit: A PPL for Astronomers (and data science!)
Existing PPL’s not suited to the model fitting challenges we 
faced when in Astronomy, for example:

● Fitting large and homogenous datasets with an identical 

model fitting procedure, with tools for processing the 

large libraries of results output.

● Problems where likelihood evaluations are expensive 

(e.g. run times of days per model-fit), necessitating 

highly customizable model-fitting pipelines with support 

for massively parallel computing.

● Fitting many different models to the same dataset with 

tools that streamline model comparison.

PyAutoFit: highly customizable model-fitting software, for big data 

challenges in the many model regime.



PyAutoFit: Links / Overview



PyAutoFit

GitHub: https://github.com/rhayes777/PyAutoFit

Readthedocs: https://pyautofit.readthedocs.io/en/latest/

JOSS Paper: https://joss.theoj.org/papers/10.21105/joss.02550 
Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

https://github.com/rhayes777/PyAutoFit
https://pyautofit.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD


HowToFit

Teach anyone how to 
compose and fit a 
probabilistic model with 
PyAutoFit.



PyAutoFit: Classy Interface
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PyAutoFit: Customization



Python Classes

The use of Python Classes to define the model, analysis and non-linear 
searches has downsides relative to other PPLs:

- It is a less concise interface.
- It requires a basic understanding of Python classes and object oriented 

programming (albeit good documentation can alleviate this).

The benefit is it provides a far more customizable model-fitting experience.



Customizing the Model

Full customization of the model 
parameterization, priors and valid 
regions of parameter space.

- Default priors can be specified in 
easy to set up configuration files, so 
a new user does not need to ‘think’ 
about them.



Customizing the Model

Full customization of the model 
parameterization, priors and valid 
regions of parameter space.

- Straightforward to add many 
different model-components via 
inheritance.

- Composition makes this concise 
and scalable.



Customizing the Analysis

The Analysis class can be extended or 
provide model-specific on-the-fly 
visualization of the model-fit so far.

- Uses the maximum likelihood model of 
the search so far.

- For long model-fits can inform you if the 
fitting has gone wrong early.



Customizing the Search

PyAutoFit supports many non-linear 
searches (MCMC, nested sampling, 
optimizers, etc.).

- Full customization of their settings.
- Defaults to configuration file values 

if not specified.



PyAutoFit: Features



Database

Results of many model fits are output in an 
sqlite relational database:

- Allocated a unique identifier based on the 
model-fit, such that you can trivially fit many 
models.

- Database supports advanced queries (e.g. 
find all results, where this parameter is in this 
range).

- Results use memory-light Python generators.

You can therefore fit (very) large datasets on a 
HPC and access the results efficiently via a 
Jupyter notebook.



Advanced Modeling Tools

Search Grid Search: Massively parallel grid searches of non-linear searches.

Search Chaining: Write highly customizable model-fitting pipelines that chain together multiple 
non-linear searches.

Sensitivity Mapping: Simulate and fit many datasets to determine when a more complex model 
would be accepted via model comparison.

Graphical / Hierarchical Models: Fit for global trends in large datasets by composing and fitting 
graphical models.



Cosmology: Strong Gravitational Lensing
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Strong Gravitational Lensing

“Normal” Galaxy: Strong Gravitational Lens:



Strong Gravitational Lensing Machine Learning

Growing literature on applying machine learning / CNN’s to strong lens 
datasets.

- Can generate large training datasets cheaply.



PyAutoLens: Open Source Strong Gravitational Lensing

All code publically available (pip / conda), object oriented design, extensive 
documentation.

GitHub: https://github.com/Jammy2211/PyAutoLens

Readthedocs: https://pyautolens.readthedocs.io/en/latest/

JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02825

The HowToLens Jupyter notebook lectures teach strong lens modeling to beginners 
(pitched at undergrads and above)!

https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02825


HowToLens

Teach anyone how to 
model strong lenses with 
PyAutoLens.

Perfect for Level 4 
students!



Strong Gravitational Lensing



PyAutoFit: Model Composition



Model 
Composition
Break strong lens 
system into different 
model components:

Lens Galaxy: Light + 
Mass

Source Galaxy: Light



Light and Mass Profile classes

                                                                                        Light Profile:

Write the model components of the
problem as Python classes using the
same API shown previously.

Note how the model specific calculations
of this problem are functions of the classes.
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Model 
Composition
Break strong lens 
system into different 
model components:

Lens Galaxy: Light + 
Mass

Source Galaxy: Light



Python Classes

The use of Python Classes to define the has a crucial additional benefit.

- It allows for multi-level model composition. 

Core for PyAutoFit’s graphical modeling and hierarchical modeling 
functionality.



Galaxy Class

Combine the mass and light profiles 
at a specific redshift to make the 
lens galaxy and source galaxy.

Note how the image_from_grid and 
deflections_from_grid methods are 
included, which use the methods of the 
individual light and mass profiles.

Redshift =  Distance from us in the Universe.



Model 
Composition
Break strong lens 
system into different 
model components:

Lens Galaxy: Light + 
Mass

Source Galaxy: Light



Composing the Model

Scans every light and mass profile to 
determine this model has 16 free parameters 
that the non-linear search fits.

- A user can easily extend the model with more 
light profiles, mass profiles, etc.

This is the API a user of your model-fitting 
software is greeted with!



Writing the Analysis

By using Python classes as the model 
components, this means we can write a 
concise likelihood function.

- Cleanly separate the model-specific code 
(e.g. light profiles, mass profiles, lensing) 
from the model-fitting code.

- Easy to extend and customize the 
Analysis class for bespoke model-fitting.



Model Composition

Straightforward for complex models 
to be composed and fitted in a 
scalable and streamlined way:

- Easy to extend model galaxies 
with many light and mass profiles. 

- Or extend the model with many 
more galaxies.



         PyAutoFit: Graphical Models



Hierarchical 
Statistical 
Models

Perform detailed 
modeling of every 
individual galaxy.

For large datasets 
flow information up 
to learn about the 
Universe.



Cancer in Populations

We build a detailed model of 
every individual cancer.

Each one tells us extremely 
small amount of information 
about the dynamics of that 
cancer across a population. 



Cosmology & Cancer

Performing detailed analysis of 
large datasets, whilst extracting 
a small amount of information 
from each about a global 
model. 



Summary

The statistical techniques used to understand the Universe’s Cosmology can be 
applied to studies of Cancer.

PyAutoFit is an open source project with scope way beyond just studies by 
Astronomers and healthcare scientists!

GitHub: https://github.com/Jammy2211/PyAutoLens

Readthedocs: https://pyautolens.readthedocs.io/en/latest/

JOSS paper: https://joss.theoj.org/papers/10.21105/joss.02550

Binder: https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD

https://github.com/Jammy2211/PyAutoLens
https://pyautolens.readthedocs.io/en/latest/
https://joss.theoj.org/papers/10.21105/joss.02550
https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD


PyAutoFit: Cosmology & 
              Cancer



ConcR

Deep Science Ventures Biotech company

https://www.concr.co/

STFC Opportunities Grant 
and Innovate UK grant with
Roche, UCL and others.

https://www.concr.co/


Cancer Cell Model

Multi-level model of cancer growth:

- Separate multiscale complexity of 
cancer model describing specific 
sub-behaviours.

- For example, a specific model of how 
a cell with a specific genetic or 
epigenetic profiles responds to 
treatment.



Cancer Tumour Model

Multi-level model of cancer growth:

- The dynamics of a tumour are then 
modeled as subpopulations of cells 
with their own genetic and cellular 
profiles.

- This acts as a high level model that 
includes the interactions between 
these different cells.



Patient Outcome

Multi-level model of cancer growth:

- The health of the patient is then 
governed by the dynamics of multiple 
tumours and their interactions with 
the patient.

- This is another higher level model.

The major goal is to perform this analysis 
on samples of many patients creating a 
high dimensionality multi-level model.

A variety of datasets are used for this 
analysis, will detail in a moment.



Cosmology & Cancer

We began talking to ConcR about 1 year into PyAutoFit develop, saw obvious 
overlap:

- Composition of multi-level models in a scalable way.
- Customization in how the model is fitted.
- Customization in how different datasets are fitted.
- Same challenge in terms of big data, massively parallel computing.

However, a core feature was missing at the heart of ConcR’s modeling:

- Ability to fit multi-level models in a way that can scale up to 100000+ parameters.
- API for multi-level modeling was non-existent.





Strong Lens Modeling

The focus of my research was fitting 
individual strong lenses.

- Turns this is a really hard problem, 
but one we have now solved.

Always knew we would need to fit 
thousands of lenses learn about galaxy 
formation and cosmology.

This requires a multi-level model. 



Graphical and Hierarchical Models



Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+ 

parameters. 
- Cannot fit using traditional non-linear search due to curse of dimensionality.



Expectation Propagation

Even with an API for composing multi-level models, how do we actually fit them?

- Each dataset has 5+ data specific parameters.
- For the problems we’re talking about, this could lead to models with 500000+ 

parameters. 
- Cannot fit using traditional non-linear search due to curse of dimensionality.

Building expectation propagation based model-fitting into graphical models 
(https://arxiv.org/abs/1412.4869).

- Fits individual nodes of the graphical model, one-by-one, in parameter spaces of 
reduced dimensionality.

- Pass information ‘up’ and ‘down’ scouring the model graph, working our way up to the 
high-level model components.

https://arxiv.org/abs/1412.4869


Example Graphical Model



Cancer Datasets

Many different types of data are fitted:

- genomic sequencing, cellular imaging, 
radioimaging, health outcomes, clinical 
trial data, etc.

On the ‘good side’ of quality / homogeneity 
for health datasets (no reliance on doctor’s 
scribbles).

A core selling point of ConcR, via the 
graphical modeling, is that it can account 
for missing data.



PyAutoFit: A PPL for Astronomers
The interface of other PPLs is designed for 

topological models, integrating functions, 

thermodynamic parameter spaces, etc.

- Great for statisticians, theorists and those with a 

certain types of model-fitting problems.

- Not so great for those with more data focused 

model-fitting problems.



PyAutoFit: Advanced 
          Features
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Search Chaining

Break a model-fit into a chained sequence of 
searches:

- Search 1: fit model to left Gaussian with fast 
non-linear search.

- Search 2: fit model to right Gaussian with fast 
non-linear search and result of search 1.

- Search 3: Fit both Gaussians simultaneously 
with thorough non-linear search and a 
parameter space starting point inferred 
from first two searches.



Grid Search of Non-linear Searches

Break a model-fit into a grid search 
of searches:

- Support for massively parallel fits.
- Database provides tools for 

analysing results efficiently.



Graphical and Hierarchical Models

Compose multi-level models for 
fitting many datasets:

- Simple example of fitting three low 
signal to noise Gaussians 
simultaneously.

- Can assume all three Gaussians 
have same centre, but different 
intensity / sigma.



Graphical and Hierarchical Models

Can set up unique Analysis class, which will pair every dataset with components of the 
multi-level model:

Model is built out of individual model components like before.


