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Our Mission

Increase cancer diagnostic accuracy and make it accessible to everyone who is in need



Cancer diagnostics today

   Biopsy                               Examination                 Diagnosis                     Treatment



Future cancer diagnosis not for everyone?

https://www.bbc.co.uk/news/health-45497014

Demand for pathological 
diagnostics is increasing by 6% 
globally.

But numbers of qualified 
pathologists cannot meet this 
demand.



Cancer diagnostics tomorrow

  Scanner                         AI pre-analysis          Check on screen             Improve model



About MindPeak

• Automation tools for visual diagnosis in pathology 

• Support cancer experts for reliable and reproducible 
diagnoses.
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Example: cancer cell detection



Robustness against 
many variations in 
the lab



Robustness against 
many variations in 
the lab



Simplicity

AI 1 AI 2

AI 3AI 4

Lab 1 Lab 2

Lab 3Lab 4

One AI for all labs

Other Vendors



Training a deep learning model

LifecycleMonitoring

Data Collection 
+ Annotations

Deployment

Training 

Implementation

Evaluation

Focus today



Goal: Test new ideas quickly
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Stage: Idea
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Overview: Idea stage

• Idea generation
• Without data
• Data-driven

• Efficient Annotations
• Metrics - define your target goals
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Idea Generation - without data

• Use brainstorming techniques
• But avoid groupthink

• Organize and group cards together
• Have a short, timeboxed discussion
• Then use limited voting sticky dots 
• Evaluate e.g. with the Business Model Canvas 



Data -driven idea generation

• Use a subset of your validation set for decisions:
• Categorize the errors
• Focus on high error categories

Example: let’s improve Stroma -> Immune misclassification!



Efficient Annotations

vs



Metrics - define your target goals

• Single metric for comparability
• Aggregates like F1
• Weighted average of aspects
• Min operator to enforce equal importance

• Single metric validates your ideas
• Sub metrics

• figure out where to improve
• guide to generate next ideas



Metrics - Mindpeak example

Cell Detection: Precision + Recall -> F1 Score

Cell Classification: Precision + Recall -> F1 Score for each class
Weighted combination of single F1 scores -> Overall F1 Score

Target Metric: Combination of Detection F1 Score + Overall Classification F1 Score



Idea stage - summary

• Think about efficient annotations
• Define single metric to guide experimentation
• Use your data to drive ideas
• Track errors your current model makes and categorize them
• Identify ideas matching high error categories
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Implementation
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Overview: Implementation stage

• Code quality (Linter, Typing, Refactorings)
• Automation: CI pipelines
• Profiling:

• Interplay CPU vs GPU usage -> Nvidia Profiler Nsight
• Reproducibility
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Code quality - comments as code

https://www.paepper.com/blog/tags/refactoring/



Code quality - use einops library

https://www.paepper.com/blog/tags/refactoring/



CI pipelines

• Take advantage of automation
• Automatic checks for code format / PEP 8 etc
• Automatic unit tests

• Especially metrics / losses / data loading / data transformation
• Automatic docker image build
• Automatic deployment of demo model / visualization prototype

• Bugs caught early are the best -> save time



On reproducibility

• Track your data with your code
• Which experiment ran with what data?
• Comparability between experiments

• We use data version control (dvc)
• Tracking the data
• Generating pipelines for training and evaluation

• Track your metrics and tensorboard logs
• Have an easy automated pipeline for comparing with the 

previous model



Implementation stage - summary

• Push for high code quality
• Touch code -> refactor
• Linting + typing + tests

• Take advantage of automation: CI
• Use a profiler to avoid easy bottlenecks
• Achieve reproducibility and track your data
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Training & Evaluation



Overview: Training & Evaluation stage

• Multi GPU Training for speedup
• Dataset reduction techniques
• Single metric as guidance
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PyTorch Data Parallelization

Speedup 3x?! 



PyTorch Data Parallelization



PyTorch Data Parallelization



Pytorch Distributed Data Parallelization



Pytorch Distributed Data Parallelization
You need to use a distributed sampler which
takes care of loading different data on each GPU

Reference: 
torch.utils.data.distributed.DistributedSampler

+ Learning Rate Warmup, 
Learning Rate Scaling

Goyal et al. 2018: 
https://arxiv.org/pdf/1706.02677.pdf



Dataset reduction techniques

• Shrink your dataset to a representative smaller set
• Not easy to define representative
• Risk of losing out on information
• Easy to do

• Create a toy dataset
• Much more work
• Highly customizable via parameters
• Not sure how it translates to real data
• Very good for idea prototyping

• e.g. label noise experiments



Training + evaluation stage - summary

• Take advantage of multi GPU training
• Dataset reduction techniques for faster training

• Small representative subset
• Toy dataset

• Single metric to select if your idea is a winner



Disappointment



Disappointment

• ML: lots of iteration
• Ideas
• Learn from it:

• Why?
• Your data / problem?
• New ideas?

• Write a diary / Confluence page
• Quality + Speed -> Next idea



Summary

• Use data-driven idea generation
• Have a single evaluation metric to target
• Automate all the things (especially tests / CI pipelines)
• Track your data with your code by using dvc 
• Strive for high code quality

• Comments as code
• Use einops for dimensional readability

• Use Distributed Data Parallel to train on multiple GPUs
• Take advantage of learning opportunities

from experiments
• Iterate quickly + have fun



marc@mindpeak.ai

@mpaepper

Marc Päpper

@

Get in touch

Looking forward to your questions!


