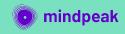
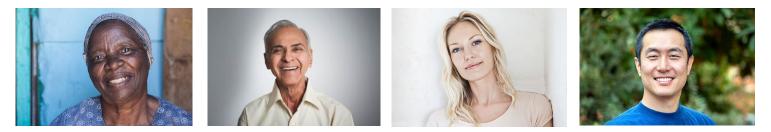


Speeding up the deep learning development life cycle for cancer diagnostics

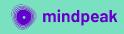
Marc Päpper 30.07.2021

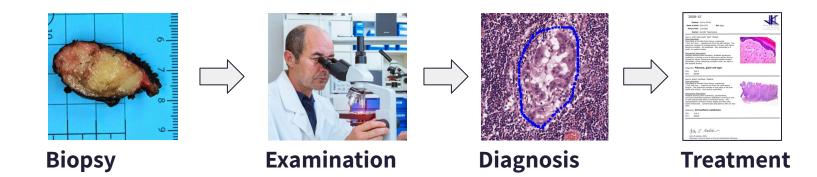


Increase cancer diagnostic accuracy and make it accessible to everyone who is in need



Cancer diagnostics today





Future cancer diagnosis **not** for everyone?



Demand for pathological diagnostics is increasing by 6% globally.

But numbers of qualified pathologists cannot meet this demand.

Pathologists shortage 'delaying cancer diagnosis'

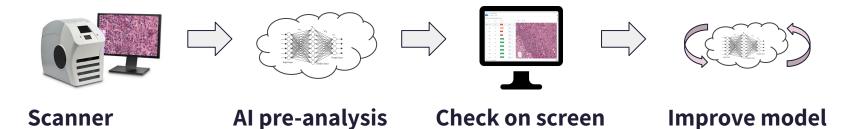
() 16 September 2018

f 🔗 😏 🗹 < Share

Patients are facing delays in diagnosis because of severe shortages among pathology staff, according to a report seen by the BBC.

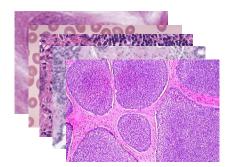
https://www.bbc.co.uk/news/health-45497014

Cancer diagnostics tomorrow



About MindPeak

• Support cancer experts for reliable and reproducible diagnoses.



Our Team and Advisors

Prof. Markus Tiemann

Pathologist and Managing Director at Institute of Haematopathology Hamburg

Prof. Axel Wellmann

Pathologist and Managing Director at Institute of Pathology Celle

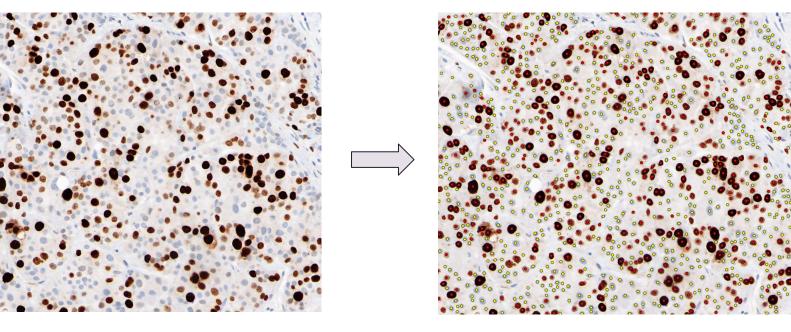
Dr. Thomas Fenner

MD for Humane Medicine and Head of Laboratory Fenner

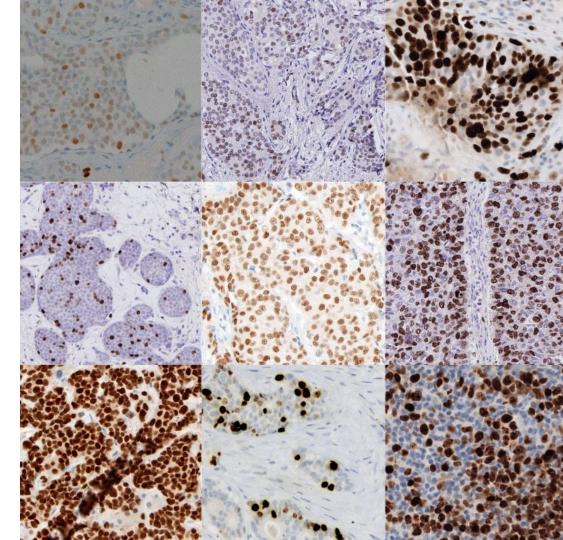
Geoff Baum

VP of Product at Adobe, co-founded Garage Ventures with Guy Kawasaki, U Stanford

Example: cancer cell detection



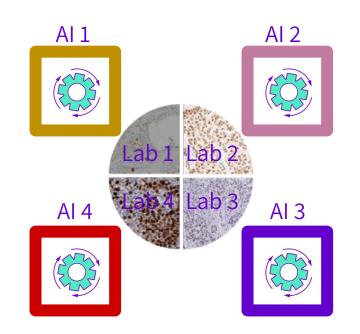
Robustness against many variations in the lab



Robustness against many variations in the lab

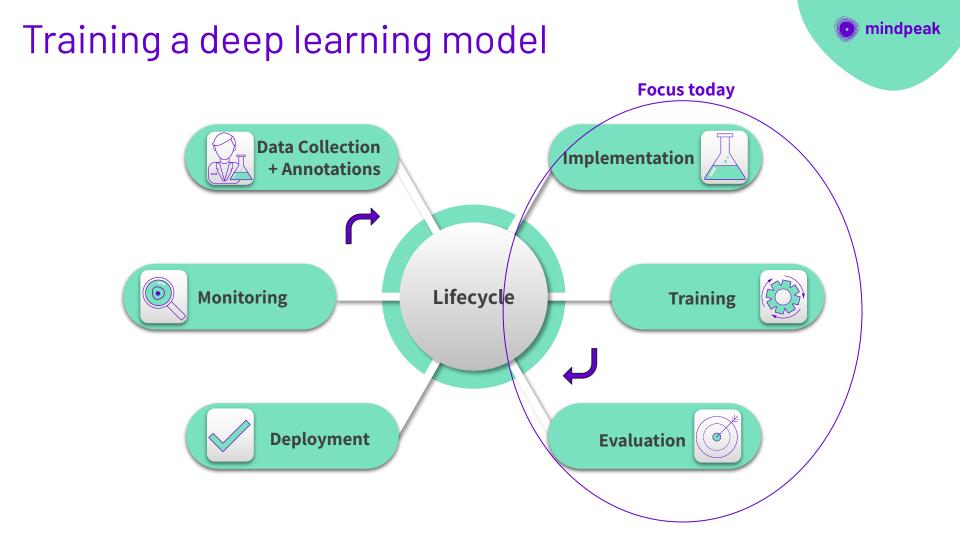


Simplicity



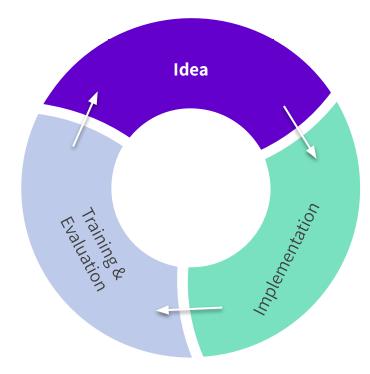
mindpeak

Other Vendors

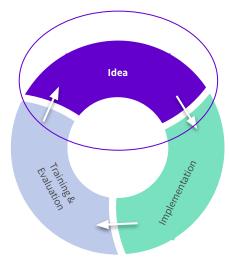


Goal: Test new ideas quickly



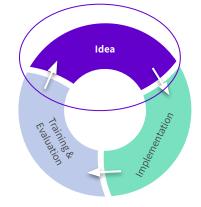


Stage: Idea



Overview: Idea stage

- Idea generation
 - Without data
 - Data-driven
- Efficient Annotations
- Metrics define your target goals



Idea Generation - without data

- Use brainstorming techniques
 - But avoid groupthink
- Organize and group cards together
- Have a short, timeboxed discussion
- Then use limited voting sticky dots
- Evaluate e.g. with the Business Model Canvas

Data -driven idea generation

- Use a subset of your validation set for decisions:
 - Categorize the errors
 - Focus on high error categories
 - Example: let's improve Stroma -> Immune misclassification!

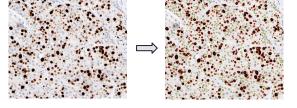
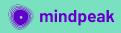
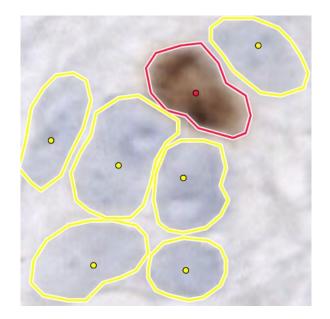


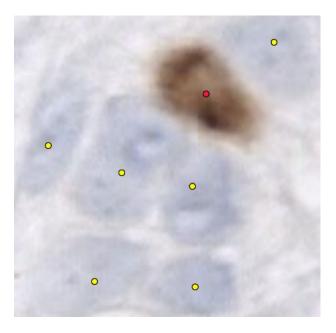
Image number	Stroma -> Immune	Immune -> Stroma	Scan artefacts
1	х		
2		х	х
3	х		х
99		х	х
100		х	х
Total Counts	4	7	35

Efficient Annotations





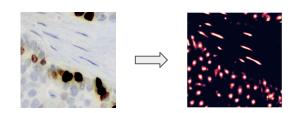
VS



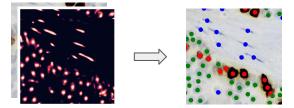
Metrics - define your target goals

- Single metric for comparability
 - Aggregates like F1
 - Weighted average of aspects
 - Min operator to enforce equal importance
- Single metric validates your ideas
- Sub metrics
 - figure out where to improve
 - guide to generate next ideas

Metrics - Mindpeak example



Cell Detection: Precision + Recall -> F1 Score

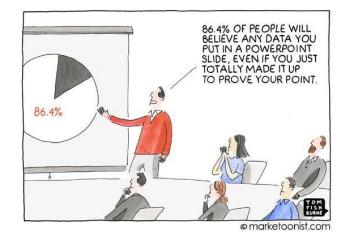


Cell Classification: Precision + Recall -> F1 Score for each class Weighted combination of single F1 scores -> Overall F1 Score

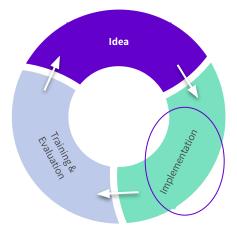
Target Metric: Combination of Detection F1 Score + Overall Classification F1 Score

Idea stage - summary

- Think about efficient annotations
- Define single metric to guide experimentation
- Use your data to drive ideas
- Track errors your current model makes and categorize them
- Identify ideas matching high error categories



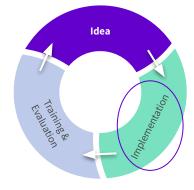
Stage: Implementation



Overview: Implementation stage

- Code quality (Linter, Typing, Refactorings)
- Automation: CI pipelines
- Profiling:
 - Interplay CPU vs GPU usage -> Nvidia Profiler Nsight
- Reproducibility

```
def greeting(name: str) -> str:
return 'Hello ' + name
```



Code quality - comments as code

mindpeak

```
def loss(predictions, targets, background_index):
# filter out background targets
mask = targets != background_index
predictions = predictions[mask]
targets = targets[mask]
```

```
loss = F.l1_loss(predictions, targets)
```

return loss

```
def _filter_background_targets(predictions, targets, background_index):
mask = targets != background_index
```

```
return predictions[mask], targets[mask]
```

```
def loss(predictions, targets, background_index):
predictions, targets = _filter_background_targets(predictions, targets, background_index)
```

```
loss = F.ll_loss(predictions, targets)
```

return loss

https://www.paepper.com/blog/tags/refactoring/

Code quality - use einops library

def	_flatten_by_channel(prediction):			
	batch_size, channels, height, width = prediction.shape			
	<pre>permuted = prediction.permute((0, 2, 3, 1))</pre>			
	<pre>final = permuted.contiguous().view((batch_size * height * width, channels))</pre>			
	return final			

def _flatten_by_channel(prediction):
return rearrange(prediction, 'batch channel height width -> (batch height width) channel')

mindpeak

https://www.paepper.com/blog/tags/refactoring/

CI pipelines

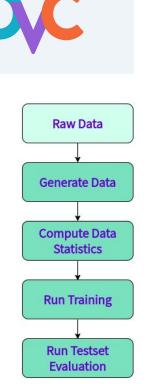
- Take advantage of automation •
 - Automatic checks for code format / PEP 8 etc ۲
 - Automatic unit tests •
 - Especially metrics / losses / data loading / data transformation ٠
 - Automatic docker image build •
 - Automatic deployment of demo model / visualization prototype ۲
- Bugs caught early are the best -> save time ٠

latest

00:02:26 🛱 51 seconds ago

On reproducibility

- Track your data with your code
 - Which experiment ran with what data?
 - Comparability between experiments
- We use data version control (dvc)
 - Tracking the data
 - Generating pipelines for training and evaluation
- Track your metrics and tensorboard logs
- Have an easy automated pipeline for comparing with the previous model

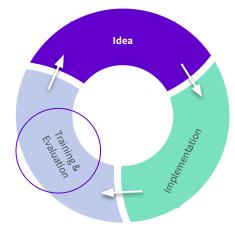


Implementation stage - summary

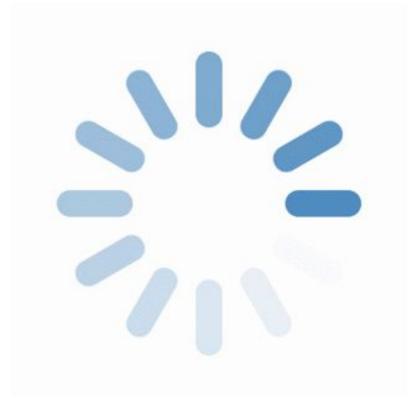
- Push for high code quality
 - Touch code -> refactor
 - Linting + typing + tests
- Take advantage of automation: CI
- Use a profiler to avoid easy bottlenecks
- Achieve reproducibility and track your data

© 00:02:26 ⊟ 51 seconds ago

Stage: Training + Evaluation

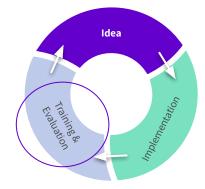


Training & Evaluation

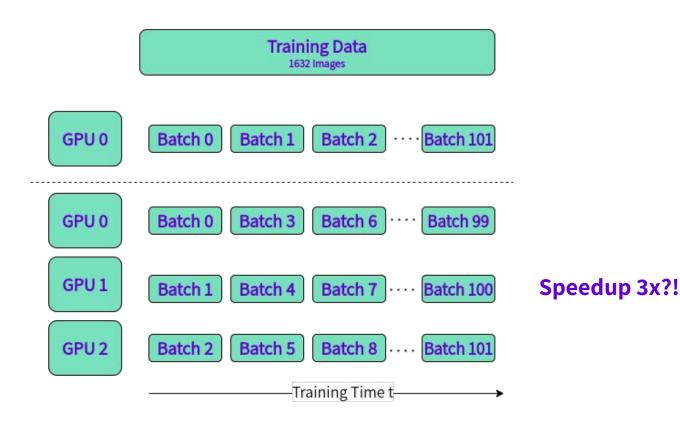


Overview: Training & Evaluation stage

- Multi GPU Training for speedup
- Dataset reduction techniques
- Single metric as guidance

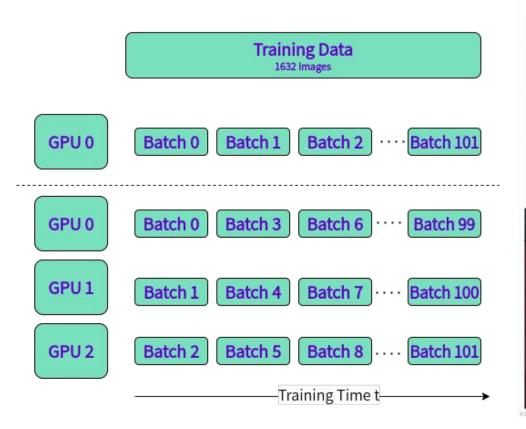


PyTorch Data Parallelization

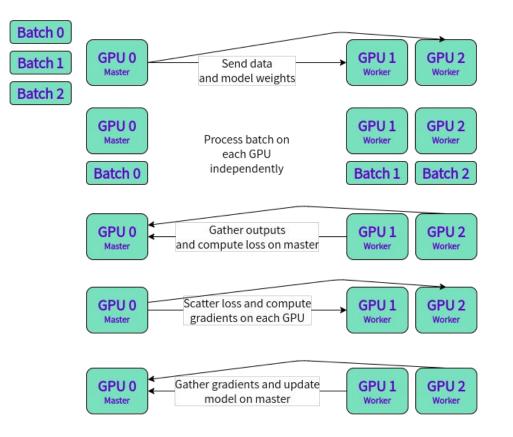


• mindpeak

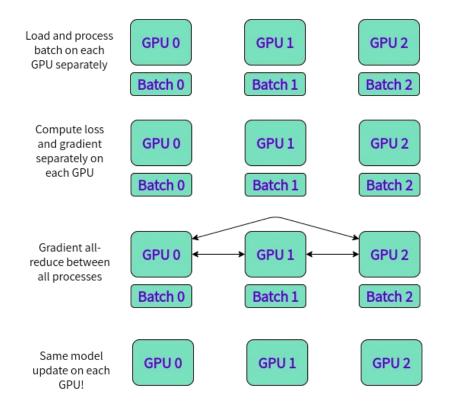
PyTorch Data Parallelization



PyTorch Data Parallelization

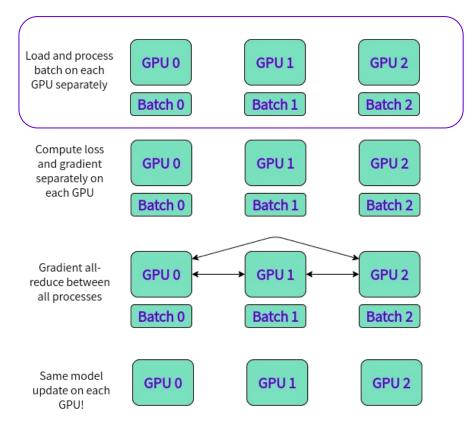


Pytorch Distributed Data Parallelization



• mindpeak

Pytorch Distributed Data Parallelization



You need to use a distributed sampler which takes care of loading different data on each GPU

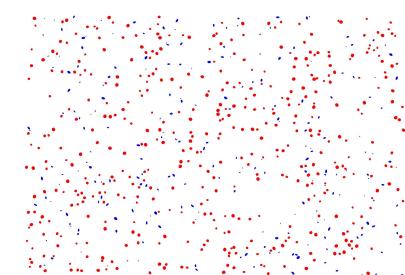
Reference:

torch.utils.data.distributed.DistributedSampler

Goyal et al. 2018: https://arxiv.org/pdf/1706.02677.pdf

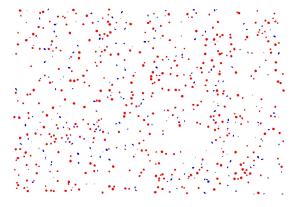
Dataset reduction techniques

- Shrink your dataset to a representative smaller set
 - Not easy to define representative
 - Risk of losing out on information
 - Easy to do
- Create a toy dataset
 - Much more work
 - Highly customizable via parameters
 - Not sure how it translates to real data
 - Very good for idea prototyping
 - e.g. label noise experiments



Training + evaluation stage - summary

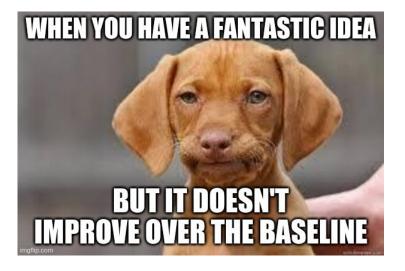
- Take advantage of multi GPU training
- Dataset reduction techniques for faster training
 - Small representative subset
 - Toy dataset
- Single metric to select if your idea is a winner



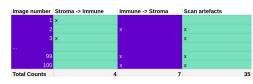
Disappointment

Disappointment

- ML: lots of iteration
- Ideas
- Learn from it:
 - Why?
 - Your data / problem?
 - New ideas?
- Write a diary / Confluence page
- Quality + Speed -> Next idea



Summary



- Use data-driven idea generation
- Have a single evaluation metric to target
- Automate all the things (especially tests / CI pipelines)
- Track your data with your code by using dvc
- Strive for high code quality
 - Comments as code
 - Use einops for dimensional readability
- Use Distributed Data Parallel to train on multiple GPUs
- Take advantage of learning opportunities from experiments
- Iterate quickly + have fun

Looking forward to your questions!

Get in touch

🍠 @mpaepper

in Marc Päpper

