
Federated Machine
Learning With Python
Training models without looking at data

Dhanshree Arora
MLOps Engineer

Agenda

1. The Privacy Cost of Machine Learning
2. Privacy Preserving Machine Learning
3. Federated Learning
4. Building a Minimal FL System
5. Opportunities in FL
6. Conclusion
7. Questions

The Privacy Cost in Machine
Learning

Credits: SMBC

https://www.smbc-comics.com/?id=3370#comic

Data credit: Information is Beautiful

Data breaches through the ages

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Privacy Preserving Machine
Learning (PPML)

Federated Learning
Training models on data at its source

Differential Privacy
Adding noise to de-identify data while preserving the distribution and
relationships within the data

Credits: Quantalabs/Differential-Privacy

q(data + noise) q(data) + noise

https://github.com/Quantalabs/Differential-Privacy

Homomorphic Encryption
Mathematical operations on encrypted data

Without HE
With HE

Federated Learning

Federated Learning vs Centralized Learning

Federated Learning Use-Cases

EDGE DEVICES:

● Recommendation
● Routine device storage

maintenance
● Health Monitoring
● Predictive Typing
● Facial Unlocking

ENTERPRISE:

● Credit Card Fraud Detection
● Credit Lending
● Disease Prediction
● Sentiment analysis
● Autonomous vehicles
● Precision Medicine

Horizontal Federated Learning

Hospital A

Hospital B

Hospital C

Vertical Federated Learning

Hospital A

Fitness Tracking App

Cross Device Federated Learning

Credits: Google AI Blog - Collaborative Machine Learning without Centralizing Data

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Cross Silo Federated Learning

Credits: Nvidia Blog - What is Federated Learning

https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/

Centralized Federated Learning

Decentralized Federated Learning

Federated Aggregation

● Area of active research
● Simple approach: aggregate weights or gradients from local

models.
● Secure aggregation: aggregate encrypted local updates and

decrypt the result.
● Several caveats, discussed in the Challenges section.

Building a Minimal FL
System

The Ingredients

● Centrally Coordinating Server
● A modelling and data processing utility
● A communication channel - we use websockets
● A medium to transfer local updates - we use Kafka
● Naive model averaging
● Tracking History

Base Example: This tutorial

https://keras.io/examples/structured_data/structured_data_classification_from_scratch/

A Small Note

● Socketio - enables real-time bidirectional event-based communication

between clients and a server.

● Kafka - a distributed event or message streaming platform that allows you

to work with a Producer Consumer pattern.

The Recipe - Server

class Server:

 def __init__(self):

 pass

 async def connect(self, sid, environ):

 pass

class Server:

 def __init__(self):

 pass

 async def connect(self, sid, environ):

 # connect with nodes, start training on min nodes

 async def start_round(self):

 # start a training round and send global model

class Server:

 def __init__(self):

 pass

 async def connect(self, sid, environ):

 # connect with nodes, start training on min nodes

 async def start_round(self):

 # start a training round and send global model

 async def fl_update(self, sid, data):

 # receive ack for updates

 def consume_updates(self):

 # consume updates when all updates are received

class Server:

....

 async def fl_update(self, sid, data):

 # receive ack for updates

 def consume_updates(self):

 # consume updates when all updates are received

 def aggregate(self, client_mapped_weights):

 # aggregate weights for layers with trainable weights

 def evaluate(self, aggregated_weights):

 # Evaluate on a holdout set

 def store_history(self):

 # Store federated losses across rounds

The Recipe - Client

class Node:

 def __init__(self):

 pass

 async def connect(self, sid, environ):

 # Connect to the server

class Node:

 def __init__(self, address, partition, client, epochs):

 pass

 def connect(self):

 # Connect to server

 def connection_received(self):

 # Get ack from server

class Node:

 def start_training(self, _model):

 # get model from json

 # compile model

 # fit

 # evaluate

 # send updates

 pass

 def fit(self, model):

 pass

 def send_updates(self, loss):

 # encode individual layers as b64 strings

 # produce over the updates topic on a Kafka server

 pass

class Node:

 def end_session(self, data):

 # get latest model weights

 # update local model

 # Clean up as necessary

 pass

 def disconnect(self):

 # Disconnect signal from server

Opportunities in FL

● The Non IID data conundrum
● Collaborations and Partnerships are difficult

○ No control over data collection stack
○ How do you do EDA?

● Technical failures:
○ Network latency
○ Connection dropouts
○ Corrupted local updates

● Not a standalone solution to
privacy:
○ Add noise by way of

Differential Privacy

● Larger attack surface with
multiple nodes, if not
implemented correctly.

Conclusion

Build Privacy into solutions
proactively.

Thanks!

Find me here:

Additional Resources:
● Code
● Advances and Open Problems in FL
● Google Federated Web comic

https://twitter.com/dhanshree_arora
https://www.linkedin.com/in/dhanshreea/
mailto:dhanshree@eder.io
https://github.com/DhanshreeA/europython-minimal-fl
https://arxiv.org/pdf/1912.04977.pdf
https://federated.withgoogle.com/

