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The Privacy Cost in Machine 
Learning



Credits: SMBC

https://www.smbc-comics.com/?id=3370#comic


Data credit: Information is Beautiful

Data breaches through the ages

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/


Privacy Preserving Machine 
Learning (PPML)



Federated Learning
Training models on data at its source



Differential Privacy
Adding noise to de-identify data while preserving the distribution and 
relationships within the data

Credits: Quantalabs/Differential-Privacy

q(data + noise) q(data) + noise

https://github.com/Quantalabs/Differential-Privacy


Homomorphic Encryption
Mathematical operations on encrypted data

Without HE
With HE



Federated Learning



Federated Learning vs Centralized Learning



Federated Learning Use-Cases

EDGE DEVICES:

● Recommendation
● Routine device storage 

maintenance
● Health Monitoring
● Predictive Typing
● Facial Unlocking

ENTERPRISE:

● Credit Card Fraud Detection
● Credit Lending
● Disease Prediction
● Sentiment analysis
● Autonomous vehicles
● Precision Medicine



Horizontal Federated Learning

Hospital A

Hospital B

Hospital C



Vertical Federated Learning

Hospital A

Fitness Tracking App



Cross Device Federated Learning

Credits: Google AI Blog - Collaborative Machine Learning without Centralizing Data

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html


Cross Silo Federated Learning

Credits: Nvidia Blog - What is Federated Learning

https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/


Centralized Federated Learning



Decentralized Federated Learning



Federated Aggregation

● Area of active research
● Simple approach: aggregate weights or gradients from local 

models.
● Secure aggregation: aggregate encrypted local updates and 

decrypt the result. 
● Several caveats, discussed in the Challenges section.



Building a Minimal FL 
System



The Ingredients

● Centrally Coordinating Server
● A modelling and data processing utility
● A communication channel - we use websockets
● A medium to transfer local updates - we use Kafka
● Naive model averaging
● Tracking History

Base Example: This tutorial

https://keras.io/examples/structured_data/structured_data_classification_from_scratch/


A Small Note

● Socketio - enables real-time bidirectional event-based communication 

between clients and a server.

● Kafka - a distributed event or message streaming platform that allows you 

to work with a Producer Consumer pattern.



The Recipe - Server

class Server:

   def __init__(self):

       pass

  

   async def connect(self, sid, environ):

       pass
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class Server:

....

   async def fl_update(self, sid, data):

       # receive ack for updates

   def consume_updates(self):

       # consume updates when all updates are received

   def aggregate(self, client_mapped_weights):

       # aggregate weights for layers with trainable weights

   def evaluate(self, aggregated_weights):

       # Evaluate on a holdout set

   def store_history(self):

       # Store federated losses across rounds



The Recipe - Client

class Node:

   def __init__(self):

       pass

  

   async def connect(self, sid, environ):

       # Connect to the server



class Node:

   def __init__(self, address, partition, client, epochs):

       pass

   def connect(self):

       # Connect to server

   def connection_received(self):

       # Get ack from server



class Node:

   def start_training(self, _model):

       # get model from json

       # compile model

       # fit

       # evaluate

       # send updates

       pass

   def fit(self, model):

       pass

   def send_updates(self, loss):

       # encode individual layers as b64 strings

       # produce over the updates topic on a Kafka server

       pass



class Node:

   def end_session(self, data):

       # get latest model weights

       # update local model

       # Clean up as necessary

       pass

   def disconnect(self):

       # Disconnect signal from server



Opportunities in FL



● The Non IID data conundrum
● Collaborations and Partnerships are difficult

○ No control over data collection stack
○ How do you do EDA?

● Technical failures:
○ Network latency
○ Connection dropouts
○ Corrupted local updates



● Not a standalone solution to 
privacy:
○ Add noise by way of 

Differential Privacy

● Larger attack surface with 
multiple nodes, if not 
implemented correctly.



Conclusion

Build Privacy into solutions 
proactively.



Thanks!

Find me here:

 

Additional Resources:
● Code
● Advances and Open Problems in FL
● Google Federated Web comic

https://twitter.com/dhanshree_arora
https://www.linkedin.com/in/dhanshreea/
mailto:dhanshree@eder.io
https://github.com/DhanshreeA/europython-minimal-fl
https://arxiv.org/pdf/1912.04977.pdf
https://federated.withgoogle.com/

