# Federated Machine Learning With Python

Training models without looking at data



Dhanshree Arora MLOps Engineer



## Agenda

- 1. The Privacy Cost of Machine Learning
- 2. Privacy Preserving Machine Learning
- 3. Federated Learning
- 4. Building a Minimal FL System
- 5. Opportunities in FL
- 6. Conclusion
- 7. Questions

# The Privacy Cost in Machine Learning





#### Data breaches through the ages



# Privacy Preserving Machine Learning (PPML)

#### **Federated Learning**

Training models on data at its source



### **Differential Privacy**

Adding noise to de-identify data while preserving the distribution and relationships within the data



q(data + noise)

Local privacy

Global privacy

## **Homomorphic Encryption**

Mathematical operations on encrypted data





Without HE



# **Federated Learning**

#### **Federated Learning vs Centralized Learning**





#### **Federated Learning Use-Cases**

#### EDGE DEVICES:

- Recommendation
- Routine device storage maintenance
- Health Monitoring
- Predictive Typing
- Facial Unlocking

#### **ENTERPRISE**:

- Credit Card Fraud Detection
- Credit Lending
- Disease Prediction
- Sentiment analysis
- Autonomous vehicles
- Precision Medicine

### **Horizontal Federated Learning**

| sex | age | spo2 | comorbidities | symptoms  | oxygen_req | icu_num_days |            |
|-----|-----|------|---------------|-----------|------------|--------------|------------|
| m   | 52  | 74   | 0             | 22 TH     | 200        | 7            |            |
| f   | 23  | 89   | 1             |           | 150        | 13           |            |
| f   | 42  | 90   | 0             | ( <u></u> | 190        | 5            | Hospital A |

| sex | age | spo2 | comorbidities | symptoms | oxygen_req | icu_num_days |
|-----|-----|------|---------------|----------|------------|--------------|
| m   | 25  | 70   | 0             |          | 120        | 19           |
| f   | 32  | 85   | 1             | 212      | 120        | 4            |
| m   | 68  | 65   | 0             |          | 210        | 11           |

Hospital B

| sex | age | spo2 | comorbidities | symptoms | oxygen_req | icu_num_days |
|-----|-----|------|---------------|----------|------------|--------------|
| m   | 46  | 74   | 0             | ***      | 150        | 7            |
| m   | 84  | 89   | 1             | <b></b>  | 300        | 20           |
| f   | 39  | 90   | 0             | 111      | 200        | 10           |

Hospital C

## **Vertical Federated Learning**

#### Hospital A

| name     | sex | age | spo2 | comorbidities | symptoms | oxygen_req | icu_num_days |
|----------|-----|-----|------|---------------|----------|------------|--------------|
| Person A | m   | 52  | 74   | 0             |          | 200        | 7            |
| Person B | f   | 23  | 89   | 1             |          | 150        | 13           |
| Person C | f   | 42  | 90   | 0             |          | 190        | 5            |

#### Fitness Tracking App

| name     | avg_active_mins | avg_rhr | avg_sleep | avg_emot     |
|----------|-----------------|---------|-----------|--------------|
| Person A | 120             | 65      | 8h30m     | happy        |
| Person B | 40              | 70      | 5h30m     | uninterested |
| Person S | 300             | 52      | 6h30m     | uninterested |

#### **Cross Device Federated Learning**



### **Cross Silo Federated Learning**



#### **Centralized Federated Learning**



#### **Decentralized Federated Learning**



## **Federated Aggregation**

- Area of active research
- Simple approach: aggregate weights or gradients from local models.
- Secure aggregation: aggregate encrypted local updates and decrypt the result.
- Several caveats, discussed in the Challenges section.

# Building a Minimal FL System

### **The Ingredients**

- Centrally Coordinating Server
- A modelling and data processing utility
- A communication channel we use websockets
- A medium to transfer local updates we use Kafka
- Naive model averaging
- Tracking History

#### A Small Note

- Socketio enables real-time bidirectional event-based communication between clients and a server.
- Kafka a distributed event or message streaming platform that allows you to work with a Producer Consumer pattern.

#### **The Recipe - Server**

```
class Server:
    def __init__(self):
        pass
    async def connect(self, sid, environ):
        pass
```

```
class Server:
    def __init__(self):
        pass
    async def connect(self, sid, environ):
        # connect with nodes, start training on min nodes
    async def start_round(self):
        # start a training round and send global model
```

```
class Server:
  def init (self):
       pass
   async def connect(self, sid, environ):
      # connect with nodes, start training on min nodes
   async def start_round(self):
      # start a training round and send global model
   async def fl_update(self, sid, data):
      # receive ack for updates
   def consume_updates(self):
      # consume updates when all updates are received
```

```
class Server:
. . . .
   async def fl_update(self, sid, data):
      # receive ack for updates
   def consume_updates(self):
      # consume updates when all updates are received
   def aggregate(self, client_mapped_weights):
      # aggregate weights for layers with trainable weights
   def evaluate(self, aggregated_weights):
      # Evaluate on a holdout set
```

def store\_history(self):
 # Store federated losses across rounds

#### **The Recipe - Client**

```
class Node:
    def __init__(self):
        pass
```

async def connect(self, sid, environ):
 # Connect to the server

```
class Node:
    def __init__(self, address, partition, client, epochs):
        pass
    def connect(self):
```

```
# Connect to server
```

```
def connection_received(self):
    # Get ack from server
```

#### class Node:

```
def start_training(self, _model):
    # get model from json
    # compile model
    # fit
    # evaluate
    # send updates
    pass
def fit(self, model):
```

pass

```
def send_updates(self, loss):
```

# encode individual layers as b64 strings

# produce over the updates topic on a Kafka server
pass

# def end\_session(self, data): # get latest model weights # update local model # Clean up as necessary pass

def disconnect(self):

# Disconnect signal from server

## **Opportunities in FL**

- The Non IID data conundrum
- Collaborations and Partnerships are difficult
  - No control over data collection stack
  - How do you do EDA?
- Technical failures:
  - Network latency
  - Connection dropouts
  - Corrupted local updates

- Not a standalone solution to privacy:
  - Add noise by way of Differential Privacy
- Larger attack surface with multiple nodes, if not implemented correctly.



WHEN YOU TRAIN PREDICTIVE MODELS ON INPUT FROM YOUR USERS, IT CAN LEAK INFORMATION IN UNEXPECTED WAYS.

## Conclusion

Build Privacy into solutions proactively.



## Thanks!

Find me here:







#### **Additional Resources:**

- <u>Code</u>
- Advances and Open Problems in FL
- Google Federated Web comic