Darts
Unifying time series forecasting models from ARIMA to Deep Learning
Francesco

- Data Scientist @ Unit8
- One of the main contributors to Darts.

Gaël

- Data Scientist @ Unit8
- Experience working with time series in various industries such as telecom, manufacturing and energy
<table>
<thead>
<tr>
<th></th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Forecasting & Darts</td>
</tr>
<tr>
<td>2</td>
<td>Forecasting using Darts</td>
</tr>
<tr>
<td>3</td>
<td>Training on multiple time-series</td>
</tr>
<tr>
<td>4</td>
<td>Probabilistic forecasting</td>
</tr>
<tr>
<td>5</td>
<td>Try Darts!</td>
</tr>
</tbody>
</table>
Time series are everywhere!
What if we could anticipate the future?
Why Darts?

● Lack of unified library in Python for time series forecasting
● To create a useful tool for ourselves
How did Darts come about?

First public release: Darts 0.1.0

Current version: Darts 0.9.1

2018/09

Initial commit by hrzn committed on 13 Sep 2018

2020/06

Today

Onwards

More capabilities to come!
1 Intro to Forecasting & Darts
2 Forecasting using Darts
3 Training on multiple time-series
4 Probabilistic forecasting
5 Try Darts!
Darts Overview

Goal

- TimeSeries
- Forecasting
- Evaluating
- Tuning
The **TimeSeries** object

```python
from darts import TimeSeries
df = pd.read_csv("monthly-milk.csv")
series = TimeSeries.from_dataframe(
    df,
    'Month',
    value_cols=['Pounds per cow'])
```
Training / validation split

```
training, validation = (series
 .split_before(pd.Timestamp('1973-01-01')))
```
Forecasting – **Exponential Smoothing**

```python
from darts.models import ExponentialSmoothing
model = ExponentialSmoothing()
model.fit(training)
forecast = model.predict(len(validation))
```
Forecasting – **Theta**

```python
from darts.models import Theta
model = Theta()
model.fit(training)
forecast = model.predict(len(validation))
```
Specifying parameters

```python
from darts.models import Theta
from darts import SeasonalityMode

model = Theta(theta=2,
              seasonality_period=12,
              season_mode=SeasonalityMode.MULTIPLICATIVE)

model.fit(training)
forecast = model.predict(len(validation))
```
Evaluating predictions – Which one is better?
Metrics

Many different scores can be computed – Darts lets you import the one you need.

```python
from darts.metrics import mape
score = mape(validation, forecast)
```

```python
from darts.metrics import mase
score = mase(validation, forecast, training)
```
Which one is better?

Exponential Smoothing

MAPE: ~3.44%

Theta

MAPE: ~2.42%
Evaluating model performance

Simulate how a model *would have performed* if it had been historically used to forecast a time series.
Predicting historical forecasts

1. Start forecast_horizon
2. Stride
3.
4.
n.

TimeSeries Forecasting Evaluating Tuning

Training Validation
Historical forecasts

```python
forecasts = model.historical_forecasts(
    series=series,
    start=0.5,
    forecast_horizon=12,
    stride=6,
    last_points_only=False
)
```
Backtesting

```python
backtest_errors = model.backtest(
    series=series,
    start=0.5,
    forecast_horizon=12,
    stride=0,
    last_points_only=False,
    metric=mape,
    reduction=None
)
```
Backtesting

```python
import numpy as np
backtest_errors = model_es.backtest(
    series=series,
    start=0.5,
    forecast_horizon=12,
    stride=6,
    last_points_only=False,
    metric=mape,
    reduction=np.mean
)
```
The `last_points_only` parameter

```
last_points = model.historical_forecasts(training_series=series,
                                        start=0.5,
                                        forecast_horizon=12,
                                        stride=1,
                                        last_points_only=True)
```
From evaluating to **optimizing**

How can we find the **best hyperparameters** to maximize accuracy?
Gridsearch

```python
parameters = {
    "theta": [0.5, 1, 1.5, 2, 2.5, 3],
    "season_mode": [SeasonalityMode.MULTIPLICATIVE, SeasonalityMode.ADDITIVE]
}

best_model = Theta.gridsearch(parameters=parameters,
                               training_series=training,
                               forecast_horizon=12,
                               start=0.5,
                               last_points_only=False,
                               metric=mape,
                               reduction=np.mean)

best_model.fit(training)
best_model_forecast = best_model.predict(len(validation))
```
Gridsearch

MAPE: ~2.42%

TimeSeries Forecasting Evaluating Tuning

MAPE: ~2.32%
1 Intro to Forecasting & Darts
2 Forecasting using Darts
3 Training on multiple time-series
4 Probabilistic forecasting
5 Try Darts!
Supported Data Types

- **Known**
- **Forecast** (unknown)
- **Univariate ts**
- **Multivariate ts**
- **Covariate ts**
 - Can be also known in the future (weekday etc)

Meta learning
Meta-learning on multiple time series

Could this help?
Meta-learning on multiple time series

Train on air traffic data only

```python
model_air = NBEATSModel(**kwargs)
model_air.fit(train_air)
pred = model_air.predict(n)
```

Train on air traffic and milk production data

```python
model_air_milk = NBEATSModel(**kwargs)
model_air_milk.fit([train_air, train_milk])
pred = model_air_milk.predict(n, series=train_air)
```
<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intro to Forecasting & Darts</td>
</tr>
<tr>
<td>2</td>
<td>Forecasting using Darts</td>
</tr>
<tr>
<td>3</td>
<td>Training on multiple time-series</td>
</tr>
<tr>
<td>4</td>
<td>Probabilistic forecasting</td>
</tr>
<tr>
<td>5</td>
<td>Try Darts!</td>
</tr>
</tbody>
</table>
Unpredictable components in time series
Unpredictable components in time series

Attempt 1

```python
model = NaiveSeasonal(seasonal_period)
model.fit(train)
pred = model.predict(n)
```

Attempt 2

```python
model = ARIMA(seasonal_period, 0, 0)
model.fit(train)
pred = model.predict(n)
```

Attempt 3

```python
model = TCNModel(likelihood=GaussianLikelihoodModel(), **kwargs)
model.fit(train, covariates)
pred = model.predict(n, covariates=covariates, num_samples=160)
```

- Safe forecast
- Uncertain forecast
Probabilistic forecasts

Deterministic forecasting model

Probabilistic forecasting model

Model

θ
Probabilistic forecasts

Model θ → Probabilistic time series (distribution-agnostic) → Confidence intervals

Code: `forecast.plot(low_quantile=0.01, high_quantile=0.99)
fcast.plot(low_quantile=0.2, high_quantile=0.8)`
Real-world probabilistic forecasting example - energy production

Monthly spikes with predictable shapes

Less predictable values in-between

```python
model = RNNModel(likelihood=GaussianLikelihoodModel(), **kwargs)
model.fit(energy_train, covariates=day_of_month)
energy_forecast = model.predict(n, num_samples=100)
```
1 Intro to Forecasting & Darts
2 Forecasting using Darts
3 Training on multiple time-series
4 Probabilistic forecasting
5 Try Darts!
Forecasting

- Statistical models
- Deep-learning models
- Probabilistic forecasting
- Multiple TS support (meta learning)
- Multivariate and covariate support
- Ensembling

Discovery
- Statistical analysis
- Visualizations

Preprocessing
- Missing value interp.
- Normalizing, scaling
- Seas./trend removal

Model Evaluation and Selection
- Historical forecasting / backtesting
- Residual analysis
- Metrics
- Grid search
If you want to try darts, here are some steps!

Check out the library yourself! As easy as: `pip install darts`

Look through one of our tutorial notebooks or intro blog post

- https://github.com/unit8co/darts/

Contacting us directly on github or via: info@unit8.co. We’re always happy to answer questions or discuss time series problems!
thank you

Francesco
francesco.laessig@unit8.com
–
Gaël
gael.grosch@unit8.com