
Code From Nothing
Procedural Generation of Python Source Code

Kirill Borisov

•I’m Kirill Borisov

•15+ years of programming experience

•Creator of pybetter & BlackConnect

•In love with everything “code”

Greetings!

•We will talk about how code is
written

•Cover a little bit of parsing

•Introduce Hypothesmith

•Dive deeper into how it works

About this talk

print(“Hello, world!”)

•Code is our bread & butter

•Code is usually written “by hand"

•But who checks it?

•Whole cottage industry of “linters"

Code… What is it, really?

file_input: (NEWLINE | stmt)* ENDMARKER

stmt: simple_stmt | compound_stmt

simple_stmt: small_stmt (';' small_stmt)* [';']
NEWLINE

small_stmt: (expr_stmt | print_stmt | del_stmt |
 pass_stmt | flow_stmt |
 import_stmt | global_stmt |
 exec_stmt | assert_stmt)

NEWLINE
‘\n’

ENDMARKER
<EOF>

NAME
‘print’

LPAR
‘(’

STRING
‘"Hello,
world!"’

RPAR
‘)’

file_input

simple_stmt

power

trailer

Module

body

Expr

value

Call

args

Str

s

‘Hello, world!’

func

Name

id

‘print’

ctx

Load

•They "read" your code

•Code style, security checks,
complexity…

•Some can also modify it!

•pep8, pyflakes, black...

Linters and autoformatters

•Use hand-crafted examples?

•You need a lot of permutations

•Limited by your imagination

•Real world will surprise you!

Checking the Checkers

•Random set of characters as input

•Take one which compiles!

•"Infinite monkey theorem", anyone?

•Highly impractical in terms of time

Random acts of code

…In computing, procedural generation is a
method of creating data algorithmically as opposed
to manually, typically through a combination of
human-generated assets and algorithms coupled
with computer-generated randomness and
processing power….

(Source: Wikipedia)

https://en.wikipedia.org/wiki/Procedural_generation

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Algorithm

•Rules on how to arrange things

•Patterns for generatng things

•Need to cover whole of the language

•Sounds like a grammar, isn’t it?

Structure is the king

•It can be represented as a tree

•Rules (non-terminals) as nodes

•Text (terminals) as leaves

•Just do random walk through the tree

Grammar as a template

•Property-based testing

•Generates wide range of input data

•Based on QuickCheck paper

•Can do “hill-climbing search”

Enter Hypothesis

https://hypothesis.works/

Source: https://hypothesis.works/articles/incremental-property-based-testing/

•Lark is a parsing toolkit for Python

•Parses language grammar into a tree

•Select subsets of nodes on each step

•Generates terminals from regexes

LarkStrategy

https://github.com/lark-parser/lark

•Indentaton to mark blocks of code

•Identifiers must be UTF-8 encodable

•Lot of AST post-processing

•New PEG parser in Python 3.10

Python is quirky

•Inspired by CSmith

•Strategy for generating Python code

•Works around mentioned quirks

•Has support for per-node generation

Enter Hypothesmith

https://github.com/Zac-HD/hypothesmith

\n

\n\n

#0

\nA\n

A\n\n

A\n

ifA:A\n

withA:A\n\n

classA:A\n

\n\nA\n

\n\n\n

forAinA:A\n

ifA:A\n\nA\n

\r\n

\nA\n\n\n

#0A\n

from……import*;global\xc2\xba;nonlocal\xc5\x9df\xf0
\xaa\x9e\xb4\xc3\x91\xf0\xa8\xa4\x81Z;\r\n

import\xc5\x90\xc5\x8a\xf0\x97\x8c\x85.\xc3
\x8fBc\xc3\x83\xec\x99\xa7L4\xc5\x95\xc5\xb
3\xf0\xac\xb1\x80\xf0\xac\xbb\xa6\xf0\x90\x
a6\xb2\xc3\x90q\xf0\xa4\x9f\xa2\xc3\x86a\xf
0\xa4\xae\x9f\xc3\xba1as\xc3\x92\xc3\x81\xc
3\x9c\xc3\x95o\xc4\x9f\xc5\x8c\xc5\x87\xc4\
x87;nonlocal\xc5\x8b\xf0\xa2\x8d\xa6\xc4\xb
1\xc5\xba\xc4\x96\xf0\xa5\xba\x96\xc4\xa8\x
c3\xab\xe3\xa7\x90,\xc4\xa0\xc4\xb4\xc4\x8c
\xc5\x95,\xc5\xa8\xc5\x84\xc3\xa9\xc4\xba\x
f0\xa1\xb0\xa6\xc2\xb7\xc5\x9f\xc3\x9d\xe3\
xb5\xb9\xe5\xb7\xa6\xc4\xac\xc5\xa9\xc4\x84
,\xc5\x90\xc5\x8a\xf0\x97\x8c\x85,\xc5\xad\
xc5\xb1\xf0\xab\x9c\x8d\xc3\xad\xc5\xac,
\xe6\x95\x9a\n \t\t\t \t
\t\r\n#\xc2\x93\xc2\x81\r\r\n\t#\xc2\xa9

•Use metrics to find better examples

•Targets:

-Bytecode instructions

-Total number of AST nodes

-Number of unique AST node types

•Longer and more complicated code

Targeted search

•BPO-40661 - Python parser segfault

•BPO-38953 - tokenize bug

•lib2to3 errors on `\r` in comment

•black fails on files ending in `\`

•Round-trip bugs in LibCST

Bugs found with Hypothesmith

https://bugs.python.org/issue40661
https://bugs.python.org/issue38953

•Most generated code is gibberish

•It can only serve as a smoke test

•No support for AST postprocessing

•Can be quite slow

Caveats

•How Hypothesis Works

•Finding and Understanding Bugs in C
Compilers

•QuickCheck - A Lightweight Tool for
Random Testing of Haskell Programs

•Compilers: Principles, Techniques
and Tools

Further reading

https://hypothesis.works/articles/how-hypothesis-works/
https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
https://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf
http://www.cs.tufts.edu/~nr/cs257/archive/john-hughes/quick.pdf
http://www.cs.tufts.edu/~nr/cs257/archive/john-hughes/quick.pdf
https://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811
https://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811

Questions?

- Thank you!
lensvol
lensvol@gmail.com

mailto:lensvol@gmail.com

